请双击下面的英文字幕来播放视频。
翻译人员: Hong Li
校对人员: Mo Siman
00:12
In ancient Greece,
0
12705
1545
在古希腊,
00:15
when anyone from slaves to soldiers,
poets and politicians,
1
15256
3943
从奴隶到士兵,从诗人到政治家,
00:19
needed to make a big decision
on life's most important questions,
2
19223
4004
都需要对人生中最重要的问题做决定,
00:23
like, "Should I get married?"
3
23251
1391
比如,我该结婚吗?
00:24
or "Should we embark on this voyage?"
4
24666
1857
这次出海我该不该去?
00:26
or "Should our army
advance into this territory?"
5
26547
2928
我们该不该向那片区域进军?
00:29
they all consulted the oracle.
6
29499
2579
他们纷纷去请教先知。
00:32
So this is how it worked:
7
32840
1440
过程是这样的:
00:34
you would bring her a question
and you would get on your knees,
8
34304
3112
你问她一个问题,然后跪在她面前,
00:37
and then she would go into this trance.
9
37440
1871
之后她会进入一种恍惚的状态。
也许持续几天,
00:39
It would take a couple of days,
10
39335
1549
00:40
and then eventually
she would come out of it,
11
40908
2163
最终她会恢复清醒状态,
00:43
giving you her predictions as your answer.
12
43095
2536
给出她的预测,回答你的问题。
00:46
From the oracle bones of ancient China
13
46730
2566
从古代中国用骨头占卜,
00:49
to ancient Greece to Mayan calendars,
14
49320
2345
到古希腊,再到玛雅历法,
00:51
people have craved for prophecy
15
51689
2296
人们祈求能得到预言,
00:54
in order to find out
what's going to happen next.
16
54009
3137
从而知道未来会发生什么。
00:58
And that's because we all want
to make the right decision.
17
58336
3239
因为我们都想做出正确的决定。
01:01
We don't want to miss something.
18
61599
1545
我们不想忽略什么。
01:03
The future is scary,
19
63712
1743
未来是可怕的,
01:05
so it's much nicer
knowing that we can make a decision
20
65479
2717
因此若我们
在做决定时多多少少
01:08
with some assurance of the outcome.
21
68220
1982
能预知结果,会更好。
01:10
Well, we have a new oracle,
22
70899
1611
如今我们有了新的先知,
01:12
and it's name is big data,
23
72534
2145
它的名字叫大数据,
01:14
or we call it "Watson"
or "deep learning" or "neural net."
24
74703
3939
或者叫它“沃森”或者
“深度学习”或者“神经网络”。
01:19
And these are the kinds of questions
we ask of our oracle now,
25
79160
4012
以下就是我们问这位先知的问题。
01:23
like, "What's the most efficient way
to ship these phones
26
83196
3922
“要把这些手机从中国运到瑞典,
01:27
from China to Sweden?"
27
87142
1823
怎么做最高效?”
01:28
Or, "What are the odds
28
88989
1800
或者“我的孩子出生时
01:30
of my child being born
with a genetic disorder?"
29
90813
3363
患遗传病的几率是多少?”
01:34
Or, "What are the sales volume
we can predict for this product?"
30
94772
3244
或者“这件产品的预计销量是多少?”
01:39
I have a dog. Her name is Elle,
and she hates the rain.
31
99928
4047
我养了一只狗,名叫艾尔,
她讨厌下雨。
01:43
And I have tried everything
to untrain her.
32
103999
3306
我想了很多办法来帮她。
01:47
But because I have failed at this,
33
107329
2771
但是因为我失败了,
01:50
I also have to consult
an oracle, called Dark Sky,
34
110124
3286
因此每次准备遛狗时,
我都会求助一位先知,叫Dark Sky,
01:53
every time before we go on a walk,
35
113434
1635
01:55
for very accurate weather predictions
in the next 10 minutes.
36
115093
3577
来获得未来10分钟精准的天气预报。
02:01
She's so sweet.
37
121355
1303
小狗真可爱。
02:03
So because of all of this,
our oracle is a $122 billion industry.
38
123647
5707
因此,“先知”大数据是
一项价值1220亿美元的产业。
02:09
Now, despite the size of this industry,
39
129826
3376
但尽管产业规模大,
02:13
the returns are surprisingly low.
40
133226
2456
投资回报却出奇地低。
02:16
Investing in big data is easy,
41
136162
2494
投资大数据很简单,
02:18
but using it is hard.
42
138680
1933
但利用它却很难。
02:21
Over 73 percent of big data projects
aren't even profitable,
43
141801
4040
超过73%的大数据项目都不赚钱,
02:25
and I have executives
coming up to me saying,
44
145865
2431
有经理来找我说,
02:28
"We're experiencing the same thing.
45
148320
1789
“我们的情况也是如此。
我们投资了一些大数据系统,
02:30
We invested in some big data system,
46
150133
1753
02:31
and our employees aren't making
better decisions.
47
151910
2968
但雇员们并未因此做出更好的决策。
02:34
And they're certainly not coming up
with more breakthrough ideas."
48
154902
3162
更别说提出突破性的想法了。”
02:38
So this is all really interesting to me,
49
158734
3184
我觉得这个现象很有意思,
02:41
because I'm a technology ethnographer.
50
161942
2010
因为我是一名技术人类学家。
02:44
I study and I advise companies
51
164450
2564
我研究人们使用技术的模式,
02:47
on the patterns
of how people use technology,
52
167038
2483
并据此为企业提供建议,
02:49
and one of my interest areas is data.
53
169545
2678
数据是我感兴趣的领域之一。
02:52
So why is having more data
not helping us make better decisions,
54
172247
5193
为什么更多的数据不能
帮我们更好的决策呢?
02:57
especially for companies
who have all these resources
55
177464
2783
尤其是那些资源丰富,
03:00
to invest in these big data systems?
56
180271
1736
能投资大数据系统的公司。
03:02
Why isn't it getting any easier for them?
57
182031
2398
为什么对他们而言,
事情并未变得简单?
03:05
So, I've witnessed the struggle firsthand.
58
185810
2634
我亲眼见过这种困境。
03:09
In 2009, I started
a research position with Nokia.
59
189194
3484
2009年,我跟诺基亚
开始进行一项研究。
03:13
And at the time,
60
193052
1158
在当时,
03:14
Nokia was one of the largest
cell phone companies in the world,
61
194234
3158
诺基亚是全球最大的
手机生产商之一,
03:17
dominating emerging markets
like China, Mexico and India --
62
197416
3202
在中国、墨西哥和印度等
新兴市场占有巨大份额,
03:20
all places where I had done
a lot of research
63
200642
2502
我在上述国家进行了大量的研究,
03:23
on how low-income people use technology.
64
203168
2676
看低收入人群是如何使用技术的。
03:25
And I spent a lot of extra time in China
65
205868
2330
我在中国花了大量时间
03:28
getting to know the informal economy.
66
208222
2592
去了解当地的街头经济。
03:30
So I did things like working
as a street vendor
67
210838
2401
我当过街边小贩,
03:33
selling dumplings to construction workers.
68
213263
2574
卖饺子给建筑工人。
03:35
Or I did fieldwork,
69
215861
1358
我还泡过网吧,
03:37
spending nights and days
in internet cafés,
70
217243
2958
在那里连续待上几天,
03:40
hanging out with Chinese youth,
so I could understand
71
220225
2546
跟中国年轻人
混在一起,来了解
03:42
how they were using
games and mobile phones
72
222795
2284
他们如何玩游戏和使用手机,
03:45
and using it between moving
from the rural areas to the cities.
73
225103
3370
如何在从农村来到城市时使用。
03:50
Through all of this qualitative evidence
that I was gathering,
74
230155
3927
通过搜集到的这些
高质量的例证,
03:54
I was starting to see so clearly
75
234106
2824
我开始清晰地看到
03:56
that a big change was about to happen
among low-income Chinese people.
76
236954
4472
在中国低收入人群中
将发生巨大的变革。
04:02
Even though they were surrounded
by advertisements for luxury products
77
242840
4367
尽管奢华产品的广告随处可见,
比如高级马桶——谁不想要?
04:07
like fancy toilets --
who wouldn't want one? --
78
247231
3495
04:10
and apartments and cars,
79
250750
2890
还有房子和车子,
04:13
through my conversations with them,
80
253664
1820
聊天过程中,
04:15
I found out that the ads
the actually enticed them the most
81
255508
3841
我发现最吸引他们的广告,
04:19
were the ones for iPhones,
82
259373
1996
是iPhone的广告,
04:21
promising them this entry
into this high-tech life.
83
261393
3052
因为感觉可以将他们
带入高科技生活。
04:25
And even when I was living with them
in urban slums like this one,
84
265289
3163
跟他们一起住在
这样的城中村里,
04:28
I saw people investing
over half of their monthly income
85
268476
2996
我看到有人花掉超过
半个月的收入
04:31
into buying a phone,
86
271496
1623
去买一部手机,
04:33
and increasingly, they were "shanzhai,"
87
273143
2302
“山寨”越来越多,
04:35
which are affordable knock-offs
of iPhones and other brands.
88
275469
3388
就是苹果和其他品牌的
廉价仿冒品。
04:40
They're very usable.
89
280123
1625
它们也能用。
04:42
Does the job.
90
282710
1322
基本功能都有。
04:44
And after years of living
with migrants and working with them
91
284570
5789
多年来,我跟这些外地人
一起工作和生活,
04:50
and just really doing everything
that they were doing,
92
290383
3434
跟他们做着同样的事情,
04:53
I started piecing
all these data points together --
93
293841
3597
我开始把很多数据联系起来,
04:57
from the things that seem random,
like me selling dumplings,
94
297462
3123
从随机事件,比如卖饺子,
05:00
to the things that were more obvious,
95
300609
1804
到比较直观的东西,
比如看他们会花多少钱买手机。
05:02
like tracking how much they were spending
on their cell phone bills.
96
302437
3232
05:05
And I was able to create
this much more holistic picture
97
305693
2639
我更全面地了解了
05:08
of what was happening.
98
308356
1156
发生的事。
05:09
And that's when I started to realize
99
309536
1722
此时我开始意识到,
05:11
that even the poorest in China
would want a smartphone,
100
311282
3509
即使是中国最穷的人,
也会想拥有一部智能手机,
05:14
and that they would do almost anything
to get their hands on one.
101
314815
4985
而为此他们几乎愿意付出一切。
05:20
You have to keep in mind,
102
320893
2404
别忘了,
05:23
iPhones had just come out, it was 2009,
103
323321
3084
那是2009年,
iPhone才刚刚出现,
05:26
so this was, like, eight years ago,
104
326429
1885
差不多是8年前,
05:28
and Androids had just started
looking like iPhones.
105
328338
2437
而安卓手机刚开始
长得像iPhone。
05:30
And a lot of very smart
and realistic people said,
106
330799
2507
很多聪明而务实的人断言,
05:33
"Those smartphones -- that's just a fad.
107
333330
2207
“这些智能手机,只会昙花一现。
05:36
Who wants to carry around
these heavy things
108
336063
2996
谁会愿意拿着这么重的手机,
05:39
where batteries drain quickly
and they break every time you drop them?"
109
339083
3487
电量掉得那么快,一摔就坏。”
05:44
But I had a lot of data,
110
344613
1201
但我有数据,
05:45
and I was very confident
about my insights,
111
345838
2260
我对自己的见解很自信,
05:48
so I was very excited
to share them with Nokia.
112
348122
2829
于是我非常兴奋地告诉诺基亚。
05:53
But Nokia was not convinced,
113
353152
2517
但是诺基亚不为所动,
05:55
because it wasn't big data.
114
355693
2335
因为我给的不是大数据。
05:58
They said, "We have
millions of data points,
115
358842
2404
他们说,“我们有几百万的数据,
06:01
and we don't see any indicators
of anyone wanting to buy a smartphone,
116
361270
4247
没有数据显示会
有人愿意买智能手机,
06:05
and your data set of 100,
as diverse as it is, is too weak
117
365541
4388
而你的数据量只有几百,
还如此分散,毫无说服力,
06:09
for us to even take seriously."
118
369953
1714
根本不值一提。”
06:12
And I said, "Nokia, you're right.
119
372728
1605
我说,“诺基亚,你是对的。
06:14
Of course you wouldn't see this,
120
374357
1560
你当然看不到这些,
06:15
because you're sending out surveys
assuming that people don't know
121
375941
3371
因为你在调查时就假定
06:19
what a smartphone is,
122
379336
1159
人们不了解智能手机,
06:20
so of course you're not going
to get any data back
123
380519
2366
因此当然得不到数据来了解
06:22
about people wanting to buy
a smartphone in two years.
124
382909
2572
2年之内想买智能手机的人。
06:25
Your surveys, your methods
have been designed
125
385505
2118
因为你们的调查和方法,
06:27
to optimize an existing business model,
126
387647
2022
目的都是优化现有的商业模式,
06:29
and I'm looking
at these emergent human dynamics
127
389693
2608
而我看到的,是前所未有的
06:32
that haven't happened yet.
128
392325
1354
人类新动向。
06:33
We're looking outside of market dynamics
129
393703
2438
我们看的是市场动态之外的东西,
06:36
so that we can get ahead of it."
130
396165
1631
因此可以领先一步。”
06:39
Well, you know what happened to Nokia?
131
399193
2244
都知道诺基亚的结局吧?
06:41
Their business fell off a cliff.
132
401461
2365
他们的生意一落千丈。
06:44
This -- this is the cost
of missing something.
133
404611
3727
这就是忽略某些事情的代价。
06:48
It was unfathomable.
134
408983
1999
就是那么难以想象。
06:51
But Nokia's not alone.
135
411823
1651
而诺基亚并非个案。
06:54
I see organizations
throwing out data all the time
136
414078
2581
我看到许多组织总是
对数据视而不见,
06:56
because it didn't come from a quant model
137
416683
2561
因为这些数据并非
来自某种数据模型,
06:59
or it doesn't fit in one.
138
419268
1768
或跟模型不符。
07:02
But it's not big data's fault.
139
422039
2048
大数据本身并没有错。
07:04
It's the way we use big data;
it's our responsibility.
140
424762
3907
是我们使用不当,错在我们。
07:09
Big data's reputation for success
141
429550
1911
大数据的声名鹊起
07:11
comes from quantifying
very specific environments,
142
431485
3759
是因为它能量化特定环境,
07:15
like electricity power grids
or delivery logistics or genetic code,
143
435268
4913
比如电网、物流或者基因编码,
07:20
when we're quantifying in systems
that are more or less contained.
144
440205
4318
帮我们量化一定程度上
可控的体系。
07:24
But not all systems
are as neatly contained.
145
444547
2969
然而并非所有的体系
都有很好的可控性。
07:27
When you're quantifying
and systems are more dynamic,
146
447540
3258
对一个动态的体系进行量化,
07:30
especially systems
that involve human beings,
147
450822
3799
尤其是牵涉到人时,
07:34
forces are complex and unpredictable,
148
454645
2426
各种因素复杂多变,
07:37
and these are things
that we don't know how to model so well.
149
457095
3486
有些因素并没有很好的模型。
07:41
Once you predict something
about human behavior,
150
461024
2813
对人的行为进行预测时,
07:43
new factors emerge,
151
463861
1855
会出现新的因素,
07:45
because conditions
are constantly changing.
152
465740
2365
因为条件是在不断变化的。
07:48
That's why it's a never-ending cycle.
153
468129
1803
因此这是个永远的循环。
07:49
You think you know something,
154
469956
1464
你以为已经懂了,
07:51
and then something unknown
enters the picture.
155
471444
2242
结果新的未知情况又出现了。
07:53
And that's why just relying
on big data alone
156
473710
3322
因此,仅仅依靠大数据,
07:57
increases the chance
that we'll miss something,
157
477056
2849
反而会使我们更容易
忽略一些事实,
07:59
while giving us this illusion
that we already know everything.
158
479929
3777
却给了我们已经掌握一切的错觉。
08:04
And what makes it really hard
to see this paradox
159
484226
3856
要看清这样一个矛盾,
08:08
and even wrap our brains around it
160
488106
2659
哪怕仅仅去认真思考它,
08:10
is that we have this thing
that I call the quantification bias,
161
490789
3691
也是困难重重,
原因在于我们偏爱量化,
08:14
which is the unconscious belief
of valuing the measurable
162
494504
3922
比起不能量化的,
总是不自觉地相信
08:18
over the immeasurable.
163
498450
1594
能够量化的。
08:21
And we often experience this at our work.
164
501042
3284
这在工作中很常见。
08:24
Maybe we work alongside
colleagues who are like this,
165
504350
2650
也许我们的同事是这样,
08:27
or even our whole entire
company may be like this,
166
507024
2428
甚至整个公司都是这样,
08:29
where people become
so fixated on that number,
167
509476
2546
大家都盯着数字,
08:32
that they can't see anything
outside of it,
168
512046
2067
而忽略了其他东西,
08:34
even when you present them evidence
right in front of their face.
169
514137
3948
即便你将证据摆在他们面前。
08:38
And this is a very appealing message,
170
518943
3371
这一点很有意思,
08:42
because there's nothing
wrong with quantifying;
171
522338
2343
因为量化本身并没有什么错,
08:44
it's actually very satisfying.
172
524705
1430
甚至会让人愉悦。
08:46
I get a great sense of comfort
from looking at an Excel spreadsheet,
173
526159
4362
看Excel表格时我就感觉挺好的,
08:50
even very simple ones.
174
530545
1401
哪怕表格很简单。
08:51
(Laughter)
175
531970
1014
(笑声)
那感觉就是,
08:53
It's just kind of like,
176
533008
1152
“好!这个公式能用。
都没问题,一切尽在掌握!”
08:54
"Yes! The formula worked. It's all OK.
Everything is under control."
177
534184
3504
08:58
But the problem is
178
538612
2390
但问题在于,
09:01
that quantifying is addictive.
179
541026
2661
量化会让人上瘾。
09:03
And when we forget that
180
543711
1382
一旦忘记这点,
09:05
and when we don't have something
to kind of keep that in check,
181
545117
3038
又没有什么纠错的机制,
09:08
it's very easy to just throw out data
182
548179
2118
就很容易舍弃
09:10
because it can't be expressed
as a numerical value.
183
550321
2718
无法变成数值的信息。
09:13
It's very easy just to slip
into silver-bullet thinking,
184
553063
2921
人们很容易执迷于一招鲜,
09:16
as if some simple solution existed.
185
556008
2579
好像总有简单的解决方法。
09:19
Because this is a great moment of danger
for any organization,
186
559420
4062
对任何组织来说这都很要命,
09:23
because oftentimes,
the future we need to predict --
187
563506
2634
因为通常我们需要预测的未来,
09:26
it isn't in that haystack,
188
566164
2166
不是这干草垛,
09:28
but it's that tornado
that's bearing down on us
189
568354
2538
而是谷仓外向我们袭来的
09:30
outside of the barn.
190
570916
1488
龙卷风。
09:34
There is no greater risk
191
574780
2326
最危险的莫过于
09:37
than being blind to the unknown.
192
577130
1666
忽略未知事物。
09:38
It can cause you to make
the wrong decisions.
193
578820
2149
这会让你做出错误的决定,
09:40
It can cause you to miss something big.
194
580993
1974
忽略重要的事情。
09:43
But we don't have to go down this path.
195
583554
3101
但我们并非别无选择。
09:47
It turns out that the oracle
of ancient Greece
196
587273
3195
其实古希腊的先知们
09:50
holds the secret key
that shows us the path forward.
197
590492
3966
已经掌握了解决问题的关键。
09:55
Now, recent geological research has shown
198
595474
2595
最近的地质研究表明,
09:58
that the Temple of Apollo,
where the most famous oracle sat,
199
598093
3564
最著名的先知
所在的阿波罗神庙
10:01
was actually built
over two earthquake faults.
200
601681
3084
正建在两个地震断层之间。
10:04
And these faults would release
these petrochemical fumes
201
604789
2886
断层不断从地下释放出
10:07
from underneath the Earth's crust,
202
607699
1685
石油化学气体。
10:09
and the oracle literally sat
right above these faults,
203
609408
3866
先知们恰好坐在这些断层上,
10:13
inhaling enormous amounts
of ethylene gas, these fissures.
204
613298
3588
吸入了从断层中
逸出的大量乙烯,
10:16
(Laughter)
205
616910
1008
10:17
It's true.
206
617942
1173
(笑声)
是真的。
(笑声)
10:19
(Laughter)
207
619139
1017
10:20
It's all true, and that's what made her
babble and hallucinate
208
620180
3509
没骗你们,因此她才会
产生幻觉,开始呢喃,
10:23
and go into this trance-like state.
209
623713
1724
变得神情恍惚,
10:25
She was high as a kite!
210
625461
1770
她正“飘”着呢!
10:27
(Laughter)
211
627255
4461
(笑声)
10:31
So how did anyone --
212
631740
2779
所以怎么可能——
10:34
How did anyone get
any useful advice out of her
213
634543
3030
这种情况下,怎么可能
从先知那里得到有用的建议?
10:37
in this state?
214
637597
1190
10:39
Well, you see those people
surrounding the oracle?
215
639317
2381
看到先知身旁的人了吗?
10:41
You see those people holding her up,
216
641722
1879
他们扶着她,
10:43
because she's, like, a little woozy?
217
643625
1717
因为她已经有点晕了。
10:45
And you see that guy
on your left-hand side
218
645366
2308
你看左手边那位老兄,
10:47
holding the orange notebook?
219
647698
1598
手里拿着橙色的本子。
10:49
Well, those were the temple guides,
220
649925
1730
他们是神庙向导,
10:51
and they worked hand in hand
with the oracle.
221
651679
3016
跟先知一起合作的。
10:55
When inquisitors would come
and get on their knees,
222
655904
2516
当求问者跪在先知面前时,
10:58
that's when the temple guides
would get to work,
223
658444
2340
神庙向导就要开始介入了,
11:00
because after they asked her questions,
224
660808
1864
求问者提问后,
11:02
they would observe their emotional state,
225
662696
2001
向导开始观察他们的精神状态,
11:04
and then they would ask them
follow-up questions,
226
664721
2324
并且问进一步的问题,
比如,“你为什么想问这个?你是谁?
11:07
like, "Why do you want to know
this prophecy? Who are you?
227
667069
2834
11:09
What are you going to do
with this information?"
228
669927
2264
你要用这个答案来做什么?”
11:12
And then the temple guides would take
this more ethnographic,
229
672215
3182
神庙向导利用这些与人更相关的
11:15
this more qualitative information,
230
675421
2156
更有实质意义的信息,
11:17
and interpret the oracle's babblings.
231
677601
2075
来对先知的呢喃进行解释。
11:21
So the oracle didn't stand alone,
232
681248
2292
所以先知并不是孤立的,
11:23
and neither should our big data systems.
233
683564
2148
大数据也不应如此。
11:26
Now to be clear,
234
686450
1161
别误会,
11:27
I'm not saying that big data systems
are huffing ethylene gas,
235
687635
3459
我不是说大数据吸了乙烯,
11:31
or that they're even giving
invalid predictions.
236
691118
2353
或者大数据的预测没有用。
11:33
The total opposite.
237
693495
1161
完全不是。
11:34
But what I am saying
238
694680
2068
我想说的是,
11:36
is that in the same way
that the oracle needed her temple guides,
239
696772
3832
正如先知需要神庙向导们一样,
11:40
our big data systems need them, too.
240
700628
2288
大数据系统也需要协助。
11:42
They need people like ethnographers
and user researchers
241
702940
4109
需要人类学家和用户研究人员,
11:47
who can gather what I call thick data.
242
707073
2506
搜集所谓的“厚数据”。
11:50
This is precious data from humans,
243
710322
2991
这是来源于人类的宝贵信息,
11:53
like stories, emotions and interactions
that cannot be quantified.
244
713337
4102
比如故事、情感和交流
等不能被量化的东西。
11:57
It's the kind of data
that I collected for Nokia
245
717463
2322
像我曾为诺基亚搜集的,
11:59
that comes in in the form
of a very small sample size,
246
719809
2669
它们来自很小的样本量,
12:02
but delivers incredible depth of meaning.
247
722502
2955
却能传达意义重大的信息。
12:05
And what makes it so thick and meaty
248
725481
3680
而“厚数据”内涵丰富是因为
12:10
is the experience of understanding
the human narrative.
249
730265
4029
其中包含了理解人类生活的过程。
12:14
And that's what helps to see
what's missing in our models.
250
734318
3639
这能帮助我们看清
模型中缺失的东西。
12:18
Thick data grounds our business questions
in human questions,
251
738671
4045
“厚数据”将商业问题
落实到人类生活,
12:22
and that's why integrating
big and thick data
252
742740
3562
因此将大数据和厚数据相结合
12:26
forms a more complete picture.
253
746326
1689
能得到更全面的认识。
12:28
Big data is able to offer
insights at scale
254
748592
2881
大数据能在数量级上提供视角,
12:31
and leverage the best
of machine intelligence,
255
751497
2647
最大限度利用机器智能,
12:34
whereas thick data can help us
rescue the context loss
256
754168
3572
而厚数据能补充
在利用大数据时
12:37
that comes from making big data usable,
257
757764
2098
缺失的情境信息,
12:39
and leverage the best
of human intelligence.
258
759886
2181
充分利用人类智慧。
12:42
And when you actually integrate the two,
that's when things get really fun,
259
762091
3552
两者结合起来时就很有意思了,
12:45
because then you're no longer
just working with data
260
765667
2436
因为这样你不只是在使用
搜集到的数据。
12:48
you've already collected.
261
768127
1196
你还能利用尚未搜集到的数据。
12:49
You get to also work with data
that hasn't been collected.
262
769347
2737
你可能会问:
12:52
You get to ask questions about why:
263
772108
1719
12:53
Why is this happening?
264
773851
1317
为什么会这样?
12:55
Now, when Netflix did this,
265
775598
1379
Netflix这么做之后,
12:57
they unlocked a whole new way
to transform their business.
266
777001
3035
他们找到了全新的方式
来进行商业转型。
13:01
Netflix is known for their really great
recommendation algorithm,
267
781226
3956
Netflix以出色的
推荐算法而闻名,
13:05
and they had this $1 million prize
for anyone who could improve it.
268
785206
4797
他们设立了100万美元的奖金,
寻找可以改进它的人。
13:10
And there were winners.
269
790027
1314
有人获奖了。
13:12
But Netflix discovered
the improvements were only incremental.
270
792075
4323
但Netflix发现改进太慢。
13:17
So to really find out what was going on,
271
797224
1964
为了彻底弄清原因,
他们雇了一位人类学家:
格兰特·麦克拉肯,
13:19
they hired an ethnographer,
Grant McCracken,
272
799212
3741
13:22
to gather thick data insights.
273
802977
1546
来搜集分析厚数据。
13:24
And what he discovered was something
that they hadn't seen initially
274
804547
3924
他发现了在一开始的数据分析中
13:28
in the quantitative data.
275
808495
1355
没发现的东西。
13:30
He discovered that people loved
to binge-watch.
276
810892
2728
他发现人们喜欢连续看片。
13:33
In fact, people didn't even
feel guilty about it.
277
813644
2353
事实上人们才不会内疚。
大家乐在其中。
13:36
They enjoyed it.
278
816021
1255
13:37
(Laughter)
279
817300
1026
(笑声)
13:38
So Netflix was like,
"Oh. This is a new insight."
280
818350
2356
于是Netflix觉得,
“噢,这是个新见解。”
13:40
So they went to their data science team,
281
820730
1938
于是他们找来数据科学团队,
13:42
and they were able to scale
this big data insight
282
822692
2318
将基于厚数据的观点
13:45
in with their quantitative data.
283
825034
2587
跟量化数据进行对比。
13:47
And once they verified it
and validated it,
284
827645
3170
这一观点得到验证后,
13:50
Netflix decided to do something
very simple but impactful.
285
830839
4761
Netflix决定采取
简单却有效的措施。
13:56
They said, instead of offering
the same show from different genres
286
836654
6492
他们不再把同一节目
做成不同体裁,
14:03
or more of the different shows
from similar users,
287
843170
3888
也不再给同一类用户
推荐不同节目,
14:07
we'll just offer more of the same show.
288
847082
2554
而是提供同一节目,
14:09
We'll make it easier
for you to binge-watch.
289
849660
2105
便于连续观看。
14:11
And they didn't stop there.
290
851789
1486
不仅如此,
14:13
They did all these things
291
853299
1474
他们还想尽一切办法
14:14
to redesign their entire
viewer experience,
292
854797
2959
重新规划用户体验,
14:17
to really encourage binge-watching.
293
857780
1758
引导用户连续观看。
14:20
It's why people and friends disappear
for whole weekends at a time,
294
860050
3241
于是大家在周末集体消失,
14:23
catching up on shows
like "Master of None."
295
863315
2343
都在追《无为大师》这样的剧。
14:25
By integrating big data and thick data,
they not only improved their business,
296
865682
4173
通过结合大数据和厚数据,
他们不仅发展了业务,
14:29
but they transformed how we consume media.
297
869879
2812
还转变了人们消费媒体的方式。
14:32
And now their stocks are projected
to double in the next few years.
298
872715
4552
他们的股价预计会在
未来几年内翻番。
14:38
But this isn't just about
watching more videos
299
878100
3830
但这不只是关于看更多的视频,
14:41
or selling more smartphones.
300
881954
1620
或者卖更多的智能手机。
14:43
For some, integrating thick data
insights into the algorithm
301
883963
4050
对某些人而言,将厚数据的观点
整合到算法中,
14:48
could mean life or death,
302
888037
2263
关乎生死,
14:50
especially for the marginalized.
303
890324
2146
尤其是被边缘化的人群。
14:53
All around the country,
police departments are using big data
304
893558
3434
全国各地的警察部门都在将大数据
用于预防性警务,
14:57
for predictive policing,
305
897016
1963
规划牢房数量,
提供量刑建议,
14:59
to set bond amounts
and sentencing recommendations
306
899003
3084
15:02
in ways that reinforce existing biases.
307
902111
3147
这种的方法更是强化了已有偏见。
15:06
NSA's Skynet machine learning algorithm
308
906116
2423
国安局的天网机器学习算法
15:08
has possibly aided in the deaths
of thousands of civilians in Pakistan
309
908563
5444
可能间接导致了几千
巴基斯坦平民丧生,
15:14
from misreading cellular device metadata.
310
914031
2721
因为误读了他们的
蜂窝移动设备的元数据。
15:18
As all of our lives become more automated,
311
918951
3403
随着我们的生活变得更加自动化,
15:22
from automobiles to health insurance
or to employment,
312
922378
3080
从汽车到健康保险到就业,
15:25
it is likely that all of us
313
925482
2350
所有人都可能
15:27
will be impacted
by the quantification bias.
314
927856
2989
会受量化偏见的负面影响。
15:32
Now, the good news
is that we've come a long way
315
932792
2621
不过好消息是,我们已经
有了很大进步,
15:35
from huffing ethylene gas
to make predictions.
316
935437
2450
不再吸入乙烯气体,
而是真正做出预测。
15:37
We have better tools,
so let's just use them better.
317
937911
3070
我们有了更好的工具,
那就让我们用好它。
15:41
Let's integrate the big data
with the thick data.
318
941005
2323
让我们将大数据和
厚数据结合起来,
15:43
Let's bring our temple guides
with the oracles,
319
943352
2261
为先知配上神庙向导,
15:45
and whether this work happens
in companies or nonprofits
320
945637
3376
无论是在公司、非营利性机构,
15:49
or government or even in the software,
321
949037
2469
还是在政府或者软件公司,
15:51
all of it matters,
322
951530
1792
都很重要,
15:53
because that means
we're collectively committed
323
953346
3023
因为这意味着我们共同承诺
15:56
to making better data,
324
956393
2191
提供更好的数据,
15:58
better algorithms, better outputs
325
958608
1836
更好的算法,更好的结果,
16:00
and better decisions.
326
960468
1643
并做出更好的决定。
16:02
This is how we'll avoid
missing that something.
327
962135
3558
这样我们才不会忽略重要信息。
16:07
(Applause)
328
967042
3948
(掌声)
New videos
关于本网站
这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。