How I'm fighting bias in algorithms | Joy Buolamwini

345,474 views ・ 2017-03-29

TED


请双击下面的英文字幕来播放视频。

翻译人员: Cong Zhu 校对人员: Aviva Nassimi
00:12
Hello, I'm Joy, a poet of code,
0
12861
3134
大家好 我是乔伊 一位写代码的诗人
00:16
on a mission to stop an unseen force that's rising,
1
16019
4993
我正努力阻止一股 逐渐凸显的无形力量
00:21
a force that I called "the coded gaze,"
2
21036
2856
一种我称为 代码的凝视 的力量
00:23
my term for algorithmic bias.
3
23916
3309
这是我用来定义算法偏见的术语
00:27
Algorithmic bias, like human bias, results in unfairness.
4
27249
4300
正如人类之间的偏见 算法偏见也会导致不公平
00:31
However, algorithms, like viruses, can spread bias on a massive scale
5
31573
6022
然而算法就像病毒一样 会以飞快的速度大范围地
00:37
at a rapid pace.
6
37619
1582
扩散偏见
00:39
Algorithmic bias can also lead to exclusionary experiences
7
39763
4387
算法也将会导致排他的经历和
00:44
and discriminatory practices.
8
44174
2128
歧视性的做法
00:46
Let me show you what I mean.
9
46326
2061
给大家举个例子
00:48
(Video) Joy Buolamwini: Hi, camera. I've got a face.
10
48800
2436
(录像)乔伊·博拉维尼: 嘿 摄像头 我来了
00:51
Can you see my face?
11
51982
1864
你可以看到我的脸吗
00:53
No-glasses face?
12
53871
1625
没有戴眼镜的脸呢
00:55
You can see her face.
13
55521
2214
你可以看到她的脸
00:58
What about my face?
14
58057
2245
那么我的脸呢
01:03
I've got a mask. Can you see my mask?
15
63710
3750
我戴上了一个面罩 你可以看到我的面罩吗
01:08
Joy Buolamwini: So how did this happen?
16
68294
2365
乔伊·博拉维尼: 这是怎么回事呢
01:10
Why am I sitting in front of a computer
17
70683
3141
为什么我坐在一台电脑前
01:13
in a white mask,
18
73848
1424
戴着一个白色的面罩
01:15
trying to be detected by a cheap webcam?
19
75296
3650
尝试着被一个廉价的 网络摄像头检测到
01:18
Well, when I'm not fighting the coded gaze
20
78970
2291
当我的身份不是写代码的诗人
01:21
as a poet of code,
21
81285
1520
与 代码的凝视 较劲的时候
01:22
I'm a graduate student at the MIT Media Lab,
22
82829
3272
我是MIT媒体实验室的 一位硕士生
01:26
and there I have the opportunity to work on all sorts of whimsical projects,
23
86125
4917
在那里我有机会参与 各种不同的项目
01:31
including the Aspire Mirror,
24
91066
2027
包括激励镜子
01:33
a project I did so I could project digital masks onto my reflection.
25
93117
5134
一个可以将数字面罩 投射在我的映像上的项目
01:38
So in the morning, if I wanted to feel powerful,
26
98275
2350
在早上的时候 如果我想充满力量
01:40
I could put on a lion.
27
100649
1434
我可以放上一个狮子的图像
01:42
If I wanted to be uplifted, I might have a quote.
28
102107
3496
如果我想要感到积极向上 我也许就会放上一句格言
01:45
So I used generic facial recognition software
29
105627
2989
我使用通用的人脸识别软件
01:48
to build the system,
30
108640
1351
来搭建系统
01:50
but found it was really hard to test it unless I wore a white mask.
31
110015
5103
但是我发现除非我戴上白色的面罩 否则测试很难成功
01:56
Unfortunately, I've run into this issue before.
32
116102
4346
遗憾的是 我以前 也曾遇到过这种问题
02:00
When I was an undergraduate at Georgia Tech studying computer science,
33
120472
4303
当我在佐治亚理工学院 读计算机科学专业本科的时候
02:04
I used to work on social robots,
34
124799
2055
我曾经在一个 社交机器人上进行实验
02:06
and one of my tasks was to get a robot to play peek-a-boo,
35
126878
3777
我的任务之一是 让机器人玩躲猫猫
02:10
a simple turn-taking game
36
130679
1683
一个简单的轮换游戏
02:12
where partners cover their face and then uncover it saying, "Peek-a-boo!"
37
132386
4321
在游戏中玩伴盖住他们的脸 然后掀开说“躲猫猫!“
02:16
The problem is, peek-a-boo doesn't really work if I can't see you,
38
136731
4429
问题是躲猫猫在我不能 看见你的时候不起作用
02:21
and my robot couldn't see me.
39
141184
2499
而我的机器人看不见我
02:23
But I borrowed my roommate's face to get the project done,
40
143707
3950
我只好借了我室友的脸 去完成这个项目
02:27
submitted the assignment,
41
147681
1380
递交了作业
02:29
and figured, you know what, somebody else will solve this problem.
42
149085
3753
寻思着总会有人 来解决这个问题的把
02:33
Not too long after,
43
153489
2003
不久之后
02:35
I was in Hong Kong for an entrepreneurship competition.
44
155516
4159
我在香港参加一次创业比赛
02:40
The organizers decided to take participants
45
160159
2694
组织者决定将各位参与者
02:42
on a tour of local start-ups.
46
162877
2372
带到当地的初创企业参观
02:45
One of the start-ups had a social robot,
47
165273
2715
其中一个创业公司 有一个社交机器人
02:48
and they decided to do a demo.
48
168012
1912
他们决定进行一个项目演示
02:49
The demo worked on everybody until it got to me,
49
169948
2980
这个项目演示对除我之外的 每个人都有效果
02:52
and you can probably guess it.
50
172952
1923
你恐怕可以猜到
02:54
It couldn't detect my face.
51
174899
2965
它不能检测到我的脸
02:57
I asked the developers what was going on,
52
177888
2511
我问开发师到底发生了什么
03:00
and it turned out we had used the same generic facial recognition software.
53
180423
5533
结果是我们使用了同一款 通用面部识别软件
03:05
Halfway around the world,
54
185980
1650
在地球的另一边
03:07
I learned that algorithmic bias can travel as quickly
55
187654
3852
我意识到算法偏见 传播得如此之快
03:11
as it takes to download some files off of the internet.
56
191530
3170
只需要从互联网上 下载一些文件
03:15
So what's going on? Why isn't my face being detected?
57
195565
3076
那么到底发生了什么 为什么我的脸没有被检测到
03:18
Well, we have to look at how we give machines sight.
58
198665
3356
我们需要了解我们 如何教会机器识别
03:22
Computer vision uses machine learning techniques
59
202045
3409
计算机视觉使用机器学习技术
03:25
to do facial recognition.
60
205478
1880
来进行面部识别
03:27
So how this works is, you create a training set with examples of faces.
61
207382
3897
所以你要用一系列脸的样本 创建一个训练体系
03:31
This is a face. This is a face. This is not a face.
62
211303
2818
这是一张脸 这是一张脸 而这不是一张脸
03:34
And over time, you can teach a computer how to recognize other faces.
63
214145
4519
慢慢地你可以教电脑 如何识别其它的脸
03:38
However, if the training sets aren't really that diverse,
64
218688
3989
然而如果这个训练集 不是那么的多样化
03:42
any face that deviates too much from the established norm
65
222701
3349
那些与已建立的标准 偏差较多的脸
03:46
will be harder to detect,
66
226074
1649
将会难以被检测到
03:47
which is what was happening to me.
67
227747
1963
而这正是我遭遇的问题
03:49
But don't worry -- there's some good news.
68
229734
2382
不过别担心 我们还有好消息
03:52
Training sets don't just materialize out of nowhere.
69
232140
2771
训练集并不是凭空产生的
03:54
We actually can create them.
70
234935
1788
实际上我们可以创造它们
03:56
So there's an opportunity to create full-spectrum training sets
71
236747
4176
现在就有机会去创造 全波段光谱的训练集
04:00
that reflect a richer portrait of humanity.
72
240947
3824
可以反映更加饱满的人类面貌
04:04
Now you've seen in my examples
73
244795
2221
现在你看到了在我的例子中
04:07
how social robots
74
247040
1768
社交机器人
04:08
was how I found out about exclusion with algorithmic bias.
75
248832
4611
使我发现了算法偏见的排他性
04:13
But algorithmic bias can also lead to discriminatory practices.
76
253467
4815
不过算法偏见还会导致 各种歧视性的做法
04:19
Across the US,
77
259257
1453
美国境内的警察局
04:20
police departments are starting to use facial recognition software
78
260734
4198
在打击犯罪的过程中
04:24
in their crime-fighting arsenal.
79
264956
2459
开始使用面部识别软件
04:27
Georgetown Law published a report
80
267439
2013
乔治敦大学法学院 发表了一个报告
04:29
showing that one in two adults in the US -- that's 117 million people --
81
269476
6763
表明在全美两个成年人中就有一个 也就是近1.2亿的人口
04:36
have their faces in facial recognition networks.
82
276263
3534
他们的面部信息 被储存在了面部识别网络中
04:39
Police departments can currently look at these networks unregulated,
83
279821
4552
警察局如今可以访问 这些未被规范的
04:44
using algorithms that have not been audited for accuracy.
84
284397
4286
使用着未审核准确性的 算法的面部识别网络
04:48
Yet we know facial recognition is not fail proof,
85
288707
3864
然而我们知道面部识别 并非万无一失
04:52
and labeling faces consistently remains a challenge.
86
292595
4179
而持续地给面部标签 还是很有挑战性的
04:56
You might have seen this on Facebook.
87
296798
1762
你也许在Facebook上见过这个
04:58
My friends and I laugh all the time when we see other people
88
298584
2988
当我和我的朋友看到其他人 在我们的照片上被错误标注时
05:01
mislabeled in our photos.
89
301596
2458
都会捧腹大笑
05:04
But misidentifying a suspected criminal is no laughing matter,
90
304078
5591
但是误认一个犯罪嫌疑人 可不是闹着玩儿的
05:09
nor is breaching civil liberties.
91
309693
2827
对公民自由的侵犯也不容忽视
05:12
Machine learning is being used for facial recognition,
92
312544
3205
机器学习正被用于面部识别
05:15
but it's also extending beyond the realm of computer vision.
93
315773
4505
但也延伸到了计算机视觉领域之外
05:21
In her book, "Weapons of Math Destruction,"
94
321086
4016
在数据科学家凯西·欧奈尔在她 《数学杀伤性武器》一书中
05:25
data scientist Cathy O'Neil talks about the rising new WMDs --
95
325126
6681
叙述了逐渐严重的 新型大规模杀伤性武器
05:31
widespread, mysterious and destructive algorithms
96
331831
4353
即 广泛应用而又神秘的 具有破坏性的算法
05:36
that are increasingly being used to make decisions
97
336208
2964
正在被越来越多地 运用于决策制定上
05:39
that impact more aspects of our lives.
98
339196
3177
而这些决策影响着 我们生活的方方面面
05:42
So who gets hired or fired?
99
342397
1870
谁被录用 又有谁被解雇
05:44
Do you get that loan? Do you get insurance?
100
344291
2112
你得到了贷款吗 你买到了保险吗
05:46
Are you admitted into the college you wanted to get into?
101
346427
3503
你被心目中的理想大学录取了吗
05:49
Do you and I pay the same price for the same product
102
349954
3509
在同一平台上的同一件产品
05:53
purchased on the same platform?
103
353487
2442
你和我是否支付同样的价格
05:55
Law enforcement is also starting to use machine learning
104
355953
3759
为了实现警情预测 执法机构也开始
05:59
for predictive policing.
105
359736
2289
使用起机器学习
06:02
Some judges use machine-generated risk scores to determine
106
362049
3494
一些法官使用机器生成的 危险评分来决定
06:05
how long an individual is going to spend in prison.
107
365567
4402
囚犯要在监狱里呆多久
06:09
So we really have to think about these decisions.
108
369993
2454
我们真的应该 仔细思考这些决定
06:12
Are they fair?
109
372471
1182
它们公平吗
06:13
And we've seen that algorithmic bias
110
373677
2890
我们已经清楚了 算法偏见
06:16
doesn't necessarily always lead to fair outcomes.
111
376591
3374
不一定总能带来公平的结果
06:19
So what can we do about it?
112
379989
1964
那我们应该怎么做呢
06:21
Well, we can start thinking about how we create more inclusive code
113
381977
3680
我们可以开始思考如何 创造更具有包容性的代码
06:25
and employ inclusive coding practices.
114
385681
2990
并且运用有包容性的编程实践
06:28
It really starts with people.
115
388695
2309
这真的要从人开始
06:31
So who codes matters.
116
391528
1961
由谁来编程很重要
06:33
Are we creating full-spectrum teams with diverse individuals
117
393513
4119
我们组建的全光谱团队中 是否包括各种各样的个体
06:37
who can check each other's blind spots?
118
397656
2411
他们可以弥补彼此的盲区吗
06:40
On the technical side, how we code matters.
119
400091
3545
在技术层面上 我们如何编程很重要
06:43
Are we factoring in fairness as we're developing systems?
120
403660
3651
我们在研发系统的同时 有没有也考虑到公平的因素
06:47
And finally, why we code matters.
121
407335
2913
最后一点 我们为什么编程也很重要
06:50
We've used tools of computational creation to unlock immense wealth.
122
410605
5083
我们用计算机创建的工具 创造了巨大的财富
06:55
We now have the opportunity to unlock even greater equality
123
415712
4447
现在我们有机会去 创造进一步的平等
07:00
if we make social change a priority
124
420183
2930
我们应该优先考虑社会变革
07:03
and not an afterthought.
125
423137
2170
而不是想着事后优化
07:05
And so these are the three tenets that will make up the "incoding" movement.
126
425828
4522
所以这三个宗旨 将构成“译码”运动
07:10
Who codes matters,
127
430374
1652
由谁来编程很重要
07:12
how we code matters
128
432050
1543
我们如何编程很重要
07:13
and why we code matters.
129
433617
2023
以及我们为什么编程很重要
07:15
So to go towards incoding, we can start thinking about
130
435664
3099
所以就译码来说 我们可以开始考虑
07:18
building platforms that can identify bias
131
438787
3164
建立一个我们可以辨识偏见的平台
07:21
by collecting people's experiences like the ones I shared,
132
441975
3078
通过收集人们与我类似的经历
07:25
but also auditing existing software.
133
445077
3070
不过也要审查现有的软件
07:28
We can also start to create more inclusive training sets.
134
448171
3765
我们也可以创造一些 更有包容性的训练集
07:31
Imagine a "Selfies for Inclusion" campaign
135
451960
2803
想象一个为了包容性的自拍运动
07:34
where you and I can help developers test and create
136
454787
3655
在那里 你和我可以帮助 程序员测试以及创造
07:38
more inclusive training sets.
137
458466
2093
更具包容性的训练集
07:41
And we can also start thinking more conscientiously
138
461122
2828
我们还可以开始更认真地思考
07:43
about the social impact of the technology that we're developing.
139
463974
5391
关于正在发展的科技 造成的社会影响
07:49
To get the incoding movement started,
140
469389
2393
为了开启译码运动
07:51
I've launched the Algorithmic Justice League,
141
471806
2847
我发起了算法正义联盟
07:54
where anyone who cares about fairness can help fight the coded gaze.
142
474677
5872
在那里任何关心公平的人 可以出力来对抗 代码的凝视
08:00
On codedgaze.com, you can report bias,
143
480573
3296
在codedgaze.com网站 你可以举报偏见
08:03
request audits, become a tester
144
483893
2445
请求审核 成为测试者
08:06
and join the ongoing conversation,
145
486362
2771
以及加入正在进行的谈话
08:09
#codedgaze.
146
489157
2287
标签就是 代码的凝视
08:12
So I invite you to join me
147
492562
2487
我在此邀请各位加入我
08:15
in creating a world where technology works for all of us,
148
495073
3719
去创造一个让科技为我们 所有人服务的世界
08:18
not just some of us,
149
498816
1897
而不是只服务于部分人
08:20
a world where we value inclusion and center social change.
150
500737
4588
一个我们珍惜包容和 聚焦社会变革的世界
08:25
Thank you.
151
505349
1175
谢谢
08:26
(Applause)
152
506548
4271
(掌声)
08:32
But I have one question:
153
512693
2854
不过我还有一个问题
08:35
Will you join me in the fight?
154
515571
2059
你会与我并肩战斗吗
08:37
(Laughter)
155
517654
1285
(笑声)
08:38
(Applause)
156
518963
3687
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog