How AI Is Unlocking the Secrets of Nature and the Universe | Demis Hassabis | TED

525,195 views ・ 2024-04-29

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Lening Xu
克里斯·安德森(Chirs Anderson): 戴密斯,欢迎来到这里。
00:04
Chris Anderson: Demis, so good to have you here.
0
4376
2335
00:06
Demis Hassabis: It's fantastic to be here, thanks, Chris.
1
6711
2711
戴密斯·哈萨比斯 (Demis Hassabis):
来到这里真是太棒了, 谢谢,克里斯。
00:09
Now, you told Time Magazine,
2
9422
2128
你告诉《时代》杂志,
00:11
"I want to understand the big questions,
3
11591
2044
“我想了解那些重大问题,
00:13
the really big ones that you normally go into philosophy or physics
4
13635
3295
那些如果你有兴趣, 会涉及哲学或物理的大问题。
00:16
if you're interested in them.
5
16972
1793
00:18
I thought building AI
6
18807
2502
我认为构建 AI
00:21
would be the fastest route to answer some of those questions."
7
21351
3420
将是回答其中一些问题的最快途径。”
00:25
Why did you think that?
8
25730
1460
你为什么这么想?
00:27
DH: (Laughs)
9
27232
1293
DH:(笑)
00:28
Well, I guess when I was a kid,
10
28567
2210
我想是因为在我小时候,
00:30
my favorite subject was physics,
11
30819
1877
我最喜欢的科目是物理学,
00:32
and I was interested in all the big questions,
12
32696
2752
我对所有重大问题、
00:35
fundamental nature of reality,
13
35490
1960
现实的基本本质、
00:37
what is consciousness,
14
37492
1335
什么是意识,
00:38
you know, all the big ones.
15
38827
1752
所有重大问题都很感兴趣。
00:40
And usually you go into physics, if you're interested in that.
16
40579
2961
通常如果你喜欢物理, 你就会对这些问题感兴趣。
00:43
But I read a lot of the great physicists,
17
43540
1960
但我了解了很多伟大的物理学家,
00:45
some of my all-time scientific heroes like Feynman and so on.
18
45542
2961
有些是我这一生的科学英雄, 比如费曼(Feynman)等等。
00:48
And I realized, in the last, sort of 20, 30 years,
19
48503
2377
我意识到,在过去的二三十年中,
00:50
we haven't made much progress
20
50880
1669
我们在理解一些基本定律方面 并没有取得太大的进展。
00:52
in understanding some of these fundamental laws.
21
52591
2335
00:54
So I thought, why not build the ultimate tool to help us,
22
54926
4672
所以我想,为什么不开发 一个终极工具来帮助我们,
00:59
which is artificial intelligence.
23
59639
1710
那就是人工智能。
01:01
And at the same time,
24
61391
1668
同时,
01:03
we could also maybe better understand ourselves
25
63101
2211
我们也可以借此 更好地了解自己和大脑。
01:05
and the brain better, by doing that too.
26
65312
1918
01:07
So not only was it incredible tool,
27
67272
1710
它不仅是个神奇的工具,
01:08
it was also useful for some of the big questions itself.
28
68982
3170
而且对一些重大问题本身也很有用。
01:12
CA: Super interesting.
29
72152
1209
CA:非常有意思。
01:13
So obviously AI can do so many things,
30
73403
2669
显然 AI 可以做很多事情,
01:16
but I think for this conversation,
31
76072
1669
但我想在这次对话中,
01:17
I'd love to focus in on this theme of what it might do
32
77782
3754
我们来重点讨论它可以做些什么
01:21
to unlock the really big questions, the giant scientific breakthroughs,
33
81536
4004
来解开真正的重大问题、 巨大的科学突破,
01:25
because it's been such a theme driving you and your company.
34
85582
3462
因为它就是推动你 和你的公司前进的那个主题。
01:29
DH: So I mean, one of the big things AI can do,
35
89044
2794
DH:我想说,我一直在思考 AI 能做的的一件大事是
01:31
and I've always thought about,
36
91880
1460
01:33
is we're getting, you know, even back 20, 30 years ago,
37
93340
3295
即使是二三十年前,
01:36
the beginning of the internet era and computer era,
38
96676
3087
互联网时代和计算机时代的开始,
01:39
the amount of data that was being produced
39
99804
3170
产生的数据量及科学数据,
01:43
and also scientific data,
40
103016
1877
01:44
just too much for the human mind to comprehend in many cases.
41
104934
3671
很多时候,人脑是无法理解的。
01:48
And I think one of the uses of AI is to find patterns and insights
42
108605
4046
我认为 AI 的用途之一 是在大量数据中
01:52
in huge amounts of data and then surface that
43
112692
2169
找到规律和见解,然后将其呈现
01:54
to the human scientists to make sense of
44
114861
2461
给人类科学家,让他们理解
01:57
and make new hypotheses and conjectures.
45
117364
2294
并做出新的假设和猜想。
01:59
So it seems to me very compatible with the scientific method.
46
119699
3504
在我看来,它与科学方法非常兼容。
02:03
CA: Right.
47
123203
1334
CA:对。
02:04
But game play has played a huge role in your own journey
48
124579
3128
但是“玩游戏”在你搞明白这些的途中 扮演了重要的角色。
02:07
in figuring this thing out.
49
127749
1293
02:09
Who is this young lad on the left there?
50
129793
2961
左边的这位小伙子是谁?
02:12
Who is that?
51
132796
1167
那是谁?
02:13
DH: So that was me, I think I must have been about around nine years old.
52
133963
3504
DH:是我,我猜大概 9 岁。
02:17
I'm captaining the England Under 11 team,
53
137467
3045
我是英格兰 11 岁以下 国际象棋队的队长
02:20
and we're playing in a Four Nations tournament,
54
140553
2461
我们正在参加四国锦标赛,
02:23
that's why we're all in red.
55
143056
1376
这就是为什么 我们都穿着红色的衣服。
02:24
I think we're playing France, Scotland and Wales, I think it was.
56
144432
3087
我想我们在打法国、苏格兰 和威尔士,没错。
02:27
CA: That is so weird, because that happened to me too.
57
147519
4546
CA:这太奇怪了, 因为这也发生在了我身上。
02:32
In my dreams.
58
152107
1167
在我的梦里。
02:33
(Laughter)
59
153274
1168
(笑声)
02:34
And it wasn't just chess,
60
154818
3378
不只是国际象棋,
02:38
you loved all kinds of games.
61
158238
1418
你喜欢各种各样的游戏。
02:39
DH: I loved all kinds of games, yeah.
62
159656
1793
DH:是的,我喜欢各种各样的游戏。
02:41
CA: And when you launched DeepMind,
63
161449
1710
CA:当你推出 DeepMind 时,
02:43
pretty quickly, you started having it tackle game play.
64
163159
4088
你很快就开始让它解决游戏问题。
02:47
Why?
65
167288
1210
为什么?
02:48
DH: Well, look, I mean, games actually got me into AI in the first place
66
168498
3420
DH:首先,是游戏把我带进了 AI,
02:51
because while we were doing things like,
67
171918
2294
因为我们做了一些事情,
02:54
we used to go on training camps with the England team and so on.
68
174254
3044
我们经常和英格兰队 一起参加训练营等等。
02:57
And actually back then,
69
177298
1669
其实当时,
02:58
I guess it was in the mid '80s,
70
178967
2711
我猜是在 80 年代中期,
03:01
we would use the very early chess computers,
71
181678
2169
如果你还有印象,
03:03
if you remember them, to train against,
72
183888
2419
我们会使用早期的国际象棋计算机 来互相训练和对战。
03:06
as well as playing against each other.
73
186349
1835
03:08
And they were big lumps of plastic,
74
188184
1877
它们是大块的塑料,
03:10
you know, physical boards that you used to,
75
190103
2002
就是这些实物板子,
03:12
some of you remember, used to actually press the squares down
76
192105
3086
有些人有印象, 你真的得按下方块,
03:15
and there were LED lights, came on.
77
195233
1752
还会亮起 LED 灯。
03:17
And I remember actually, not just thinking about the chess,
78
197026
2795
我记得我不仅仅是“想着”国际象棋,
03:19
I was actually just fascinated by the fact that this lump of plastic,
79
199821
3545
我是为它着迷,这一块塑料,
03:23
someone had programmed it to be smart
80
203408
3378
有人把它编程得很聪明,
03:26
and actually play chess to a really high standard.
81
206828
2669
以相当高的水平下象棋。
03:29
And I was just amazed by that.
82
209497
1877
我大为震撼。
03:31
And that got me thinking about thinking.
83
211374
2461
这让我开始思考。
03:33
And how does the brain come up with these thought processes,
84
213877
3461
大脑是如何想出这些思维过程、
03:37
these ideas,
85
217380
1168
这些想法的,
03:38
and then maybe how we could mimic that with computers.
86
218548
3337
也许我们该如何用计算机模仿它们。
03:42
So yeah, it's been a whole theme for my whole life, really.
87
222218
3921
所以没错, 这确实是我一生的全部主题。
03:46
CA: But you raised all this money to launch DeepMind,
88
226139
3170
CA:但是你筹集了这些资金 来推出 DeepMind,
03:49
and pretty soon you were using it to do, for example, this.
89
229350
4922
很快你就用它来做一些事, 就比如说这个。
03:55
I mean, this is an odd use of it.
90
235190
1960
这个用法很奇怪。
03:57
What was going on here?
91
237192
1209
怎么回事?
03:58
DH: Well, we started off with games at the beginning of DeepMind.
92
238443
3086
DH:我们从 DeepMind 一开始 就是在玩游戏。
04:01
This was back in 2010, so this is from about 10 years ago,
93
241529
2711
那是 2010 年, 所以是大约 10 年前的事,
04:04
it was our first big breakthrough.
94
244240
1710
这是我们的第一个重大突破。
04:05
Because we started off with classic Atari games from the 1970s,
95
245992
3253
因为我们从 20 世纪 70 年代的 经典雅达利游戏开始,
04:09
the simplest kind of computer games there are out there.
96
249287
3504
是市面上最简单的那种电脑游戏。
04:12
And one of the reasons we used games is they're very convenient
97
252832
2962
我们使用游戏的原因之一 是它们可以非常方便地
04:15
to test out your ideas and your algorithms.
98
255835
3796
测试你的想法和算法。
04:19
They're really fast to test.
99
259672
1544
它们的测试速度非常快。
04:21
And also, as your systems get more powerful,
100
261674
2711
而且,随着你的系统越来越强大,
04:24
you can choose harder and harder games.
101
264385
2336
你可以选择越来越难的游戏。
04:26
And this was actually the first time ever that our machine surprised us,
102
266721
4004
这其实是我们的机器有史以来 第一次让我们感到惊讶,
04:30
the first of many times,
103
270767
1293
许多次中的第一次,
04:32
which, it figured out in this game called Breakout,
104
272060
2419
它在这款名为《打砖块》的游戏中发现,
04:34
that you could send the ball round the back of the wall,
105
274479
2627
你可以让球绕到墙的背面,
04:37
and actually, it would be much safer way to knock out all the tiles of the wall.
106
277148
3796
这样打掉墙上的所有砖块要稳得多。
04:40
It's a classic Atari game there.
107
280944
1543
这是一款经典的雅达利游戏。
04:42
And that was our first real aha moment.
108
282529
1876
那是我们第一个真正的顿悟时刻。
04:44
CA: So this thing was not programmed to have any strategy.
109
284405
2962
CA:所以它并没有 被编程拥有任何策略。
04:47
It was just told, try and figure out a way of winning.
110
287408
3671
只是告诉它, 尝试并找出一个胜出的方法。
04:51
You just move the bat at the bottom and see if you can find a way of winning.
111
291120
3713
只是在底部把击球板移来移去, 看看能不能找到一个胜出的办法。
04:54
DH: It was a real revolution at the time.
112
294833
2002
DH:当时这是一场真正的革命。
04:56
So this was in 2012, 2013
113
296835
1376
2012 年、2013 年,
04:58
where we coined these terms "deep reinforcement learning."
114
298211
3337
我们创造了“深度强化学习”这些术语。
05:01
And the key thing about them is that those systems were learning
115
301548
3044
它们的关键是这些系统
05:04
directly from the pixels, the raw pixels on the screen,
116
304634
2586
直接从像素, 屏幕上的原始像素中学习,
05:07
but they weren't being told anything else.
117
307262
2085
但它们没有被告知其他任何东西。
05:09
So they were being told, maximize the score,
118
309389
2169
它们被要求拿到最高的积分,
05:11
here are the pixels on the screen,
119
311558
1668
这是屏幕上的像素,
05:13
30,000 pixels.
120
313268
2085
30000 个像素。
05:15
The system has to make sense on its own from first principles
121
315395
3420
系统必须根据第一性原理
05:18
what’s going on, what it’s controlling,
122
318857
1876
自行理解正在发生什么、 它要控制什么、
05:20
how to get points.
123
320733
1168
如何获得积分。
05:21
And that's the other nice thing about using games to begin with.
124
321901
3003
这也是从一开始 就使用游戏的另一个好处。
05:24
They have clear objectives, to win, to get scores.
125
324946
2377
它们有明确的目标, 要获胜,要得分。
05:27
So you can kind of measure very easily that your systems are improving.
126
327323
3587
因此,你可以很容易地 衡量你的系统是否在改进。
05:30
CA: But there was a direct line from that to this moment
127
330910
2628
CA:但这直接影响到了 几年后的这个时刻,
05:33
a few years later,
128
333580
1459
05:35
where country of South Korea and many other parts of Asia
129
335081
4129
韩国和亚洲许多其他地区,
05:39
and in fact the world went crazy over -- over what?
130
339252
3045
甚至是全世界都为了什么而沸腾了?
05:42
DH: Yeah, so this was the pinnacle of -- this is in 2016 --
131
342589
3712
DH:是的,这是我们的巅峰, 发生在 2016 年,
05:46
the pinnacle of our games-playing work,
132
346342
2586
我们“玩游戏”成果的巅峰,
05:48
where, so we'd done Atari,
133
348970
1793
我们做了雅达利,
05:50
we'd done some more complicated games.
134
350763
2169
也做了更复杂的游戏。
05:52
And then we reached the pinnacle, which was the game of Go,
135
352974
3295
然后我们达到了巅峰,那就是围棋,
05:56
which is what they play in Asia instead of chess,
136
356311
2961
亚洲人下的是围棋, 而不是国际象棋,
05:59
but it's actually more complex than chess.
137
359272
2085
但它其实比国际象棋更复杂。
06:01
And the actual brute force algorithms
138
361357
4171
用于破解国际象棋的那种暴力算法
06:05
that were used to kind of crack chess were not possible with Go
139
365528
4671
是无法破解围棋的,
06:10
because it's a much more pattern-based game,
140
370241
2419
因为这是一款更加基于模式的游戏,
06:12
much more intuitive game.
141
372702
1293
更直观的游戏。
06:14
So even though Deep Blue beat Garry Kasparov in the '90s,
142
374037
3503
因此,尽管深蓝在 90 年代击败了 加里·卡斯帕罗夫(Garry Kasparov),
06:17
it took another 20 years for our program, AlphaGo,
143
377582
4129
但我们的项目 AlphaGo 又花了 20 年时间
06:21
to beat the world champion at Go.
144
381753
1710
才在围棋比赛中击败世界冠军。
06:23
And we always thought,
145
383504
1168
我们一直认为,
06:24
myself and the people working on this project for many years,
146
384714
2878
我自己和多年从事这个项目的人,
06:27
if you could build a system that could beat the world champion at Go,
147
387634
3920
如果你能构建出一个 能在围棋上击败世界冠军的系统,
06:31
it would have had to have done something very interesting.
148
391596
2711
它一定会做一些非常有趣的事情。
06:34
And in this case, what we did with AlphaGo,
149
394349
2043
在这种情况下, 我们让 AlphaGo 做的
06:36
is it basically learned for itself,
150
396392
1710
基本上就是自主学习,
06:38
by playing millions and millions of games against itself,
151
398102
2711
通过自己和自己玩数百万场游戏
06:40
ideas about Go, the right strategies.
152
400813
1794
学习围棋的思路、正确的策略。
06:42
And in fact invented its own new strategies
153
402607
2461
它实际上研究出了自己的全新策略,
06:45
that the Go world had never seen before,
154
405068
2002
在围棋界都闻所未闻,
06:47
even though we've played Go for more than,
155
407070
2627
即使我们下围棋已有 2000 多年了,
06:49
you know, 2,000 years,
156
409697
1460
06:51
it's the oldest board game in existence.
157
411199
2753
它是现存最古老的棋盘游戏。
06:54
So, you know, it was pretty astounding.
158
414327
1918
这令人瞠目结舌。
06:56
Not only did it win the match,
159
416245
1627
它不仅赢得了比赛,
06:57
it also came up with brand new strategies.
160
417872
2836
还想出了全新的策略。
07:01
CA: And you continued this with a new strategy
161
421125
2169
CA:你继续采用这种新策略,
07:03
of not even really teaching it anything about Go,
162
423336
2294
一点都不教它下围棋,
07:05
but just setting up systems
163
425630
1877
只是建立一个系统,
07:07
that just from first principles would play
164
427548
3254
只凭第一性原则就足以发挥作用,
07:10
so that they could teach themselves from scratch, Go or chess.
165
430802
5088
让它从头自学, 无论是围棋还是国际象棋。
07:15
Talk about AlphaZero and the amazing thing that happened in chess then.
166
435932
5714
谈谈 AlphaZero 以及当时 在国际象棋上发生的神奇故事。
07:21
DH: So following this, we started with AlphaGo
167
441646
3045
DH:在此之后, 我们从 AlphaGo 入手,
07:24
by giving it all of the human games that are being played on the internet.
168
444691
3920
向它提供了网上所有人类玩的游戏。
07:28
So it started that as a basic starting point for its knowledge.
169
448611
3587
它以此为其知识的基本起点。
07:32
And then we wanted to see what would happen if we started from scratch,
170
452240
3587
然后我们想看看如果我们从头开始,
07:35
from literally random play.
171
455868
1669
从随机游戏开始,会发生什么。
07:37
So this is what AlphaZero was.
172
457537
1501
这就是 AlphaZero。
07:39
That's why it's the zero in the name,
173
459038
1835
这就是为什么它名字里是“零”,
07:40
because it started with zero prior knowledge
174
460873
3170
因为它从零先验知识开始。
07:44
And the reason we did that is because then we would build a system
175
464085
3128
而我们之所以这样做, 是因为这样我们就能构建
07:47
that was more general.
176
467213
1251
一个更通用的系统。
07:48
So AlphaGo could only play Go,
177
468464
1919
AlphaGo 只会下围棋,
07:50
but AlphaZero could play any two-player game,
178
470425
2836
但 AlphaZero 会玩所有双人游戏,
07:53
and it did it by playing initially randomly
179
473302
4088
它通过最初随机乱玩,
07:57
and then slowly, incrementally improving.
180
477432
1960
然后缓慢地逐步改进做到这一点。
07:59
Well, not very slowly, actually, within the course of 24 hours,
181
479434
2961
好吧,其实不是很缓慢, 其实是是在 24 小时内
08:02
going from random to better than world-champion level.
182
482395
3045
从乱玩,到更好, 到世界冠军的水平。
08:06
CA: And so this is so amazing to me.
183
486315
1752
CA:这对我来说太神奇了。
08:08
So I'm more familiar with chess than with Go.
184
488067
2127
我对国际象棋比对围棋更熟悉。
08:10
And for decades,
185
490194
1335
几十年来,
08:11
thousands and thousands of AI experts worked on building
186
491571
3462
成千上万的 AI 专家致力于打造
08:15
incredible chess computers.
187
495033
1334
强大的国际象棋计算机。
08:16
Eventually, they got better than humans.
188
496367
2544
最终,它们变得比人类更强。
08:18
You had a moment a few years ago,
189
498953
2211
几年前有过一个时刻,
08:21
where in nine hours,
190
501205
2628
在九个小时内,
08:23
AlphaZero taught itself to play chess better than any of those systems ever did.
191
503875
6590
AlphaZero 自学下国际象棋, 水平超过了任何以往的系统。
08:30
Talk about that.
192
510923
1252
聊聊这个吧。
08:32
DH: It was a pretty incredible moment, actually.
193
512175
2294
DH:那真是一个非常不可思议的时刻。
08:34
So we set it going on chess.
194
514510
2211
我们让它下国际象棋。
08:38
And as you said, there's this rich history of chess and AI
195
518056
2752
正如你所说,国际象棋和 AI 有着悠久的历史,
08:40
where there are these expert systems that have been programmed
196
520808
2920
有用国际象棋思维和算法 编程的专业系统。
08:43
with these chess ideas, chess algorithms.
197
523770
2294
08:46
And you have this amazing, you know,
198
526105
2044
然后就有了这神奇的一刻,
08:48
I remember this day very clearly, where you sort of sit down with the system
199
528191
3837
我清楚记得这一天, 你看着这个系统,
08:52
starting off random, you know, in the morning,
200
532070
2919
从早上开始随便乱下,
08:55
you go for a cup of coffee, you come back.
201
535031
2002
你去喝杯咖啡,然后回来。
08:57
I can still just about beat it by lunchtime, maybe just about.
202
537075
3503
到午餐时间我还能打败它,差不多吧。
09:00
And then you let it go for another four hours.
203
540620
2210
然后让它再下四个小时。
09:02
And by dinner,
204
542830
1168
到了晚饭的时候,
09:03
it's the greatest chess-playing entity that's ever existed.
205
543998
2795
它已经是有史以来 最伟大的国际象棋实体了。
09:06
And, you know, it's quite amazing,
206
546834
1669
这真是太神奇了,
09:08
like, looking at that live on something that you know well,
207
548503
3211
眼睁睁地看着这种,
09:11
you know, like chess, and you're expert in
208
551714
2044
比如国际象棋,你擅长的领域,
09:13
and actually just seeing that in front of your eyes.
209
553800
2460
亲眼目睹它的发生。
09:16
And then you extrapolate to what it could then do in science or something else,
210
556260
3963
然后你推断它在科学 或其他领域也能做什么,
09:20
which of course, games were only a means to an end.
211
560264
2878
当然,游戏只是达到目的的一种手段。
09:23
They were never the end in themselves.
212
563184
1835
它们本身从来不是终点。
09:25
They were just the training ground for our ideas
213
565019
2461
它们只是我们想法的训练场,
09:27
and to make quick progress in a matter of, you know,
214
567522
2877
也是我们快速在一个问题上 取得进展的训练场,
09:30
less than five years actually went from Atari to Go.
215
570441
4046
从雅达利到围棋的时间不到五年。
09:34
CA: I mean, this is why people are in awe of AI
216
574529
3295
CA:这就是为什么 人们对 AI 感到敬畏,
09:37
and also kind of terrified by it.
217
577865
2127
也对它感到恐惧的原因。
09:40
I mean, it's not just incremental improvement.
218
580034
2169
这不仅仅是渐进式的改进。
09:42
The fact that in a few hours you can achieve
219
582245
2919
你可以在几个小时内实现
09:45
what millions of humans over centuries have not been able to achieve.
220
585206
4796
数百万人几个世纪以来 无法实现的目标。
09:50
That gives you pause for thought.
221
590044
2586
这让你停下来思考。
09:53
DH: It does, I mean, it's a hugely powerful technology.
222
593214
2836
DH:确实如此, 它是一项非常强大的技术。
09:56
It's going to be incredibly transformative.
223
596092
2044
这将是极其具有变革性的。
09:58
And we have to be very thoughtful about how we use that capability.
224
598136
4004
我们必须非常仔细地 考虑如何使用这种能力。
10:02
CA: So talk about this use of it because this is again,
225
602181
2586
CA:谈谈它的这种用途, 因为这又是
10:04
this is another extension of the work you've done,
226
604767
3754
你所做工作的又一次延伸,
10:08
where now you're turning it to something incredibly useful for the world.
227
608563
4129
你现正把它变成对世界 非常有用的东西。
10:12
What are all the letters on the left, and what’s on the right?
228
612733
2920
左边的字母都是些什么? 右边是什么?
10:15
DH: This was always my aim with AI from a kid,
229
615695
4129
DH:这一直是 我小时候使用 AI 的目标,
10:19
which is to use it to accelerate scientific discovery.
230
619866
3169
那就是用它来加速科学发现。
10:23
And actually, ever since doing my undergrad at Cambridge,
231
623035
2962
自从在剑桥大学读本科后,
10:26
I had this problem in mind one day for AI,
232
626038
2545
有一天我想到了 关于 AI 的这个问题,
10:28
it's called the protein-folding problem.
233
628624
1919
叫做蛋白质折叠问题。
10:30
And it's kind of like a 50-year grand challenge in biology.
234
630543
2794
这有点像生物学领域 长达 50 年的重大挑战。
10:33
And it's very simple to explain.
235
633337
1919
而且解释起来很简单。
10:35
Proteins are essential to life.
236
635256
2461
蛋白质对生命至关重要。
10:38
They're the building blocks of life.
237
638009
1751
它们是生命的基石。
10:39
Everything in your body depends on proteins.
238
639760
2086
你体内的一切都依赖于蛋白质。
10:41
A protein is sort of described by its amino acid sequence,
239
641846
5380
蛋白质在某种程度上 是由其氨基酸序列来描述的,
10:47
which you can think of as roughly the genetic sequence
240
647226
2544
你可以把它大致看作是 描述蛋白质的基因序列,
10:49
describing the protein, so that are the letters.
241
649812
2252
这些字母就是这个序列。
10:52
CA: And each of those letters represents in itself a complex molecule?
242
652064
3295
CA:每一个字母 都代表一个复杂的分子?
10:55
DH: That's right, each of those letters is an amino acid.
243
655401
2711
DH:没错,每个字母都是一个氨基酸。
10:58
And you can think of them as a kind of string of beads
244
658112
2544
你可以把它们看成一串串珠子,
11:00
there at the bottom, left, right?
245
660698
1919
出现在底部、左边、右边,对吧?
11:02
But in nature, in your body or in an animal,
246
662658
3420
但是在大自然中, 在你或者动物的身体里,
11:06
this string, a sequence,
247
666078
1794
这一串字母,这个序列,
11:07
turns into this beautiful shape on the right.
248
667914
2544
会变成右边这个漂亮的形状。
11:10
That's the protein.
249
670458
1209
这就是蛋白质。
11:11
Those letters describe that shape.
250
671709
2586
这些字母描述了这个形状。
11:14
And that's what it looks like in nature.
251
674295
2294
这就是它在自然界中的样子。
11:16
And the important thing about that 3D structure is
252
676589
2502
而这个三维结构的重要之处在于
11:19
the 3D structure of the protein goes a long way to telling you
253
679133
3170
蛋白质的三维结构 在很大程度上可以告诉你
11:22
what its function is in the body, what it does.
254
682345
2210
它在体内的功能、它的作用。
11:24
And so the protein-folding problem is:
255
684597
2252
蛋白质折叠问题是:
11:26
Can you directly predict the 3D structure just from the amino acid sequence?
256
686891
4963
你能直接从氨基酸序列中 预测三维结构吗?
11:31
So literally if you give the machine, the AI system,
257
691854
2544
也就是如果你给机器、AI 系统
11:34
the letters on the left,
258
694440
1502
左边的字母,
11:35
can it produce the 3D structure on the right?
259
695983
2253
它能生成右边的三维结构吗?
11:38
And that's what AlphaFold does, our program does.
260
698277
2336
AlphaFold 做的就是这件事, 我们的程序做的就是这件事。
11:40
CA: It's not calculating it from the letters,
261
700613
2169
CA:它不是根据字母计算出来的,
11:42
it's looking at patterns of other folded proteins that are known about
262
702823
4922
而是研究已知的 其他折叠蛋白质的模式,
11:47
and somehow learning from those patterns
263
707745
2628
以某种方式从这些模式中学到
11:50
that this may be the way to do this?
264
710414
1752
可能做到这一点的方法?
11:52
DH: So when we started this project, actually straight after AlphaGo,
265
712166
3295
DH:我们开始做这个项目时, 其实是紧接着 AlphaGo,
11:55
I thought we were ready.
266
715503
1168
我以为我们已经准备好了。
11:56
Once we'd cracked Go,
267
716712
1168
当我们破解了围棋之后,
11:57
I felt we were finally ready after, you know,
268
717880
2711
我以为我们终于 在研究了 20 年之后准备就绪,
12:00
almost 20 years of working on this stuff
269
720591
1919
12:02
to actually tackle some scientific problems,
270
722551
2586
可以真正解决一些科学问题,
12:05
including protein folding.
271
725179
1335
包括蛋白质折叠。
12:06
And what we start with is painstakingly,
272
726514
3044
我们一开始就是勤勤恳恳地,
12:09
over the last 40-plus years,
273
729600
1794
在过去的 40 多年里,
12:11
experimental biologists have pieced together
274
731435
3420
实验生物学家拼出了
12:14
around 150,000 protein structures
275
734855
2670
大约 15 万个蛋白质结构,
12:17
using very complicated, you know, X-ray crystallography techniques
276
737566
3671
借助非常复杂的 X 射线晶体学技术
12:21
and other complicated experimental techniques.
277
741237
2794
和其他复杂的实验技术。
12:24
And the rule of thumb is
278
744031
2086
粗略估算,
12:26
that it takes one PhD student their whole PhD,
279
746117
3628
一个博士生需要 花费整个博士学位期间,
12:29
so four or five years, to uncover one structure.
280
749787
3420
也就是四到五年的时间, 才能解析一个结构。
12:33
But there are 200 million proteins known to nature.
281
753207
2961
但是大自然 已知有 2 亿种蛋白质。
12:36
So you could just, you know, take forever to do that.
282
756210
3170
你可以花上无限的时间。
12:39
And so we managed to actually fold, using AlphaFold, in one year,
283
759422
4337
我们使用 AlphaFold 在一年内折叠了
12:43
all those 200 million proteins known to science.
284
763801
2419
科学已知的所有 2 亿种蛋白质。
12:46
So that's a billion years of PhD time saved.
285
766262
2711
给博士生省了十亿年。
12:49
(Applause)
286
769015
3837
(掌声)
12:52
CA: So it's amazing to me just how reliably it works.
287
772893
2503
CA:它的可靠性令我惊艳。
12:55
I mean, this shows, you know,
288
775396
2669
这表明,这就是模型, 你做了实验。
12:58
here's the model and you do the experiment.
289
778107
2044
13:00
And sure enough, the protein turns out the same way.
290
780151
3044
果然,蛋白质就是这样的。
13:03
Times 200 million.
291
783195
1210
乘以 2 亿。
13:04
DH: And the more deeply you go into proteins,
292
784447
2669
DH:你对蛋白质的了解越深,
13:07
you just start appreciating how exquisite they are.
293
787158
2711
你就会体会到它们有多精巧。
13:09
I mean, look at how beautiful these proteins are.
294
789910
2294
看看这些蛋白质多漂亮啊。
13:12
And each of these things do a special function in nature.
295
792246
2711
这些东西在自然界中 都起着特殊的作用。
13:14
And they're almost like works of art.
296
794957
1794
它们几乎就像是艺术品。
13:16
And it's still astounds me today that AlphaFold can predict,
297
796751
2836
如今依然令我震惊的是, AlphaFold 能够预测,
13:19
the green is the ground truth, and the blue is the prediction,
298
799587
2961
绿色是基本事实, 蓝色是预测,
13:22
how well it can predict, is to within the width of an atom on average,
299
802548
4254
它能预测得多好, 平均在一个原子的宽度以内,
13:26
is how accurate the prediction is,
300
806802
2044
它的预测就是这么精确,
13:28
which is what is needed for biologists to use it,
301
808888
2627
生物学家要使用它 就需要这样的精确度,
13:31
and for drug design and for disease understanding,
302
811557
2836
也是设计药物和了解疾病所需要的,
13:34
which is what AlphaFold unlocks.
303
814435
2502
而这正是 AlphaFold 所能带来的。
13:36
CA: You made a surprising decision,
304
816979
1710
CA:你做了一个出人意料的决定,
13:38
which was to give away the actual results of your 200 million proteins.
305
818731
5964
那就是将 2 亿种蛋白质的实际结果 “拱手相让”。
13:44
DH: We open-sourced AlphaFold and gave everything away
306
824737
3003
DH:我们开源了 AlphaFold,并把一切
13:47
on a huge database with our wonderful colleagues,
307
827782
2294
都通过一个巨大的数据库 交给了我们优秀的同行,
13:50
the European Bioinformatics Institute.
308
830117
1835
他们来自欧洲生物信息学研究所。
13:51
(Applause)
309
831952
3170
(掌声)
13:55
CA: I mean, you're part of Google.
310
835122
2378
CA:你是谷歌的一员。
13:57
Was there a phone call saying, "Uh, Demis, what did you just do?"
311
837541
3963
有没有人打电话说: “呃,戴密斯,你刚才做了什么?”
14:01
DH: You know, I'm lucky we have very supportive,
312
841879
2753
DH:我很幸运 我们得到了非常大的支持,
14:04
Google's really supportive of science
313
844673
1794
谷歌非常支持科学,
14:06
and understand the benefits this can bring to the world.
314
846509
4337
也知道这能给世界带来什么好处。
14:10
And, you know, the argument here
315
850888
1543
而且问题是
14:12
was that we could only ever have even scratched the surface
316
852473
3211
我们做到的只是触及
14:15
of the potential of what we could do with this.
317
855726
2211
我们能用它做些什么的潜力的表面。
14:17
This, you know, maybe like a millionth
318
857937
1877
这大概是科学界正在 用它做的事情的百万分之一。
14:19
of what the scientific community is doing with it.
319
859814
2377
14:22
There's over a million and a half biologists around the world
320
862233
3336
全世界有超过 150 万名生物学家
14:25
have used AlphaFold and its predictions.
321
865569
1919
使用了 AlphaFold 及其预测。
14:27
We think that's almost every biologist in the world
322
867530
2419
我们认为,世界上几乎每个生物学家、
14:29
is making use of this now, every pharma company.
323
869949
2252
每家制药公司都在使用它。
14:32
So we'll never know probably what the full impact of it all is.
324
872243
3086
因此,我们可能永远不会知道 这一切的全部影响。
14:35
CA: But you're continuing this work in a new company
325
875329
2461
CA:但是你正在从谷歌拆分出来的
14:37
that's spinning out of Google called Isomorph.
326
877832
2544
一家名为 Isomorph 的新公司里 继续这项工作。
14:40
DH: Isomorphic.
327
880376
1251
DH:Isomorphic。
14:41
CA: Isomorphic.
328
881627
1376
CA:Isomorphic。
14:43
Give us just a sense of the vision there.
329
883879
2002
让我们了解一下它的愿景。 愿景是什么?
14:45
What's the vision?
330
885881
1168
DH:AlphaFold 是一种基础生物学工具。
14:47
DH: AlphaFold is a sort of fundamental biology tool.
331
887091
2961
14:50
Like, what are these 3D structures,
332
890094
2627
比如,这些三维结构是什么,
14:52
and then what might they do in nature?
333
892763
2795
它们在自然界中会做些什么?
14:55
And then if you, you know,
334
895975
1334
如果你……我之所以想到这个问题 并对此感到非常兴奋,
14:57
the reason I thought about this and was so excited about this,
335
897309
2962
15:00
is that this is the beginnings of understanding disease
336
900271
3545
是因为这是了解疾病的开始,
15:03
and also maybe helpful for designing drugs.
337
903816
3086
也可能对药物的设计有所帮助。
15:06
So if you know the shape of the protein,
338
906944
2503
如果你知道蛋白质的形状,
15:09
and then you can kind of figure out
339
909488
2378
你就能弄清楚蛋白质表面的哪一部分
15:11
which part of the surface of the protein
340
911907
1919
15:13
you're going to target with your drug compound.
341
913826
2377
是你的药物化合物的靶点。
15:16
And Isomorphic is extending this work we did in AlphaFold
342
916245
3670
Isomorphic 正在将我们 在 AlphaFold 中做的这项工作
15:19
into the chemistry space,
343
919957
1585
扩展到药物领域,
15:21
where we can design chemical compounds
344
921542
3003
我们可以设计出能够精确 与蛋白质正确位置结合的化合物,
15:24
that will bind exactly to the right spot on the protein
345
924587
2878
15:27
and also, importantly, to nothing else in the body.
346
927465
3086
更重要的是, 它不会与体内其他任何东西结合。
15:30
So it doesn't have any side effects and it's not toxic and so on.
347
930593
4296
所以它没有任何副作用, 也没有毒性等等。
15:34
And we're building many other AI models,
348
934930
2169
而且我们正在构建 许多其他 AI 模型,
15:37
sort of sister models to AlphaFold
349
937141
2336
类似于 AlphaFold 的姊妹模型帮助预测,
15:39
to help predict,
350
939477
1710
15:41
make predictions in chemistry space.
351
941228
2294
在药物领域做出预测。
15:43
CA: So we can expect to see
352
943564
1293
CA:我们可以预见,
15:44
some pretty dramatic health medicine breakthroughs
353
944899
3128
在未来几年中,健康医学 将取得一些相当显著的突破。
15:48
in the coming few years.
354
948027
1209
15:49
DH: I think we'll be able to get down drug discovery
355
949278
2711
DH:我认为我们可以 将药物研发时间
15:51
from years to maybe months.
356
951989
2127
从几年缩短到几个月。
15:54
CA: OK. Demis, I'd like to change direction a bit.
357
954158
2919
CA:好吧。戴密斯, 我想稍微转换一下话题。
15:58
Our mutual friend, Liv Boeree, gave a talk last year at TEDAI
358
958329
3962
我们共同的朋友 丽芙·波瑞(Liv Boeree)
去年在 TEDAI 上发表了一场演讲,
16:02
that she called the “Moloch Trap.”
359
962291
2044
她称之为《摩洛克陷阱》 (Moloch Trap)。
16:04
The Moloch Trap is a situation
360
964835
1877
摩洛克陷阱指的是
16:06
where organizations,
361
966754
2836
处于竞争环境中的组织
16:09
companies in a competitive situation can be driven to do things
362
969632
5130
和公司可能被迫去做
16:14
that no individual running those companies would by themselves do.
363
974762
4629
任何一个经营这些公司的人 自己不会做的事情。
16:19
I was really struck by this talk,
364
979391
2294
这场演讲真的给我留下了深刻的印象,
16:21
and it's felt, as a sort of layperson observer,
365
981685
3587
作为一个外行观察者,
16:25
that the Moloch Trap has been shockingly in effect in the last couple of years.
366
985272
5089
我觉得在过去的几年里, 摩洛克陷阱的作用令人震惊。
16:30
So here you are with DeepMind,
367
990402
2044
你在 DeepMind,
16:32
sort of pursuing these amazing medical breakthroughs
368
992488
3170
在追求这些惊人的医学突破
16:35
and scientific breakthroughs,
369
995699
1418
和科学突破,
16:37
and then suddenly, kind of out of left field,
370
997117
4004
然后突然之间,
微软投资的 OpenAI发布了 ChatGPT, 遥遥领先。
16:41
OpenAI with Microsoft releases ChatGPT.
371
1001163
5381
16:46
And the world goes crazy and suddenly goes, “Holy crap, AI is ...”
372
1006585
3879
然后世界都为之疯狂, 突然就变成:“天哪,AI 是……”,
16:50
you know, everyone can use it.
373
1010464
2586
每个人都可以使用它。
16:54
And there’s a sort of, it felt like the Moloch Trap in action.
374
1014260
4045
就像是亲身实践摩洛克陷阱。
16:58
I think Microsoft CEO Satya Nadella actually said,
375
1018347
5130
我记得微软首席执行官 萨提亚·纳德拉(Satya Nadella)说过:
17:03
"Google is the 800-pound gorilla in the search space.
376
1023477
4838
“谷歌是搜索领域的霸主。
17:08
We wanted to make Google dance."
377
1028357
2836
我们想让谷歌手忙脚乱。”
17:12
How ...?
378
1032319
1293
怎么……?
17:14
And it did, Google did dance.
379
1034613
1877
确实如此,谷歌确实手忙脚乱。
17:16
There was a dramatic response.
380
1036490
1960
引起了剧烈的反应。
17:18
Your role was changed,
381
1038993
1167
你的角色发生了变化,
17:20
you took over the whole Google AI effort.
382
1040160
3879
你接管了谷歌 AI 的全部工作。
17:24
Products were rushed out.
383
1044456
1627
产品匆匆上线。
17:27
You know, Gemini, some part amazing, part embarrassing.
384
1047251
3003
Gemini 有一部分很神奇, 有一部分很丢人。
17:30
I’m not going to ask you about Gemini because you’ve addressed it elsewhere.
385
1050296
3628
我不会问你有关 Gemini 的问题, 因为你在别处已经解答过了。
17:33
But it feels like this was the Moloch Trap happening,
386
1053924
3295
但这感觉就像是摩洛克陷阱正在上演,
17:37
that you and others were pushed to do stuff
387
1057261
2753
你和其他人被迫去做
17:40
that you wouldn't have done without this sort of catalyzing competitive thing.
388
1060055
5047
没有竞争刺激你根本不会做的事情。
17:45
Meta did something similar as well.
389
1065102
2169
Meta 也做了类似的事情。
17:47
They rushed out an open-source version of AI,
390
1067313
3336
他们匆忙推出了 AI 的开源版本,
17:50
which is arguably a reckless act in itself.
391
1070691
3295
这本身可以说是一种鲁莽的行为。
17:55
This seems terrifying to me.
392
1075613
1459
这对我来说很可怕。
17:57
Is it terrifying?
393
1077072
1835
可怕吗?
17:59
DH: Look, it's a complicated topic, of course.
394
1079617
2252
DH:这当然是一个复杂的话题。
18:01
And, first of all, I mean, there are many things to say about it.
395
1081869
3879
首先,这个话题有很多可说的。
18:05
First of all, we were working on many large language models.
396
1085789
4421
首先,我们正在研究 很多大语言模型。
18:10
And in fact, obviously, Google research actually invented Transformers,
397
1090252
3337
很明显,谷歌研究在五、六年前 发明了 Transformer 模型,
18:13
as you know,
398
1093589
1168
18:14
which was the architecture that allowed all this to be possible,
399
1094798
3045
正是这种架构使这一切成为可能。
18:17
five, six years ago.
400
1097885
1251
18:19
And so we had many large models internally.
401
1099178
2669
我们内部有许多大模型。
18:21
The thing was, I think what the ChatGPT moment did that changed was,
402
1101847
3879
问题是,我认为 ChatGPT 时刻 所带来的改变是,
18:25
and fair play to them to do that, was they demonstrated,
403
1105768
3128
他们这么做也是公平的, 因为他们证明了,
18:28
I think somewhat surprisingly to themselves as well,
404
1108937
2795
我觉得对他们自己来说也是意外的,
18:31
that the public were ready to,
405
1111732
2502
他们证明了公众已经准备好,
18:34
you know, the general public were ready to embrace these systems
406
1114276
3003
公众已经准备好接受这些系统
18:37
and actually find value in these systems.
407
1117279
1960
并从中寻找价值。
18:39
Impressive though they are, I guess, when we're working on these systems,
408
1119281
3962
虽然它们很厉害, 但是我们在研究这些系统的时候,
18:43
mostly you're focusing on the flaws and the things they don't do
409
1123243
3003
主要关注的是缺陷 和它们做不了的事情,
18:46
and hallucinations and things you're all familiar with now.
410
1126288
2836
还有幻觉和你们现在都熟知的问题。
18:49
We're thinking, you know,
411
1129124
1377
我们在想,
18:50
would anyone really find that useful given that it does this and that?
412
1130501
3587
它有这种问题,有那种问题, 真的会有人觉得它有用吗?
18:54
And we would want them to improve those things first,
413
1134129
2503
我们希望它们能在推出之前 先改进这些问题。
18:56
before putting them out.
414
1136674
1418
18:58
But interestingly, it turned out that even with those flaws,
415
1138133
3754
但有趣的是,事实证明, 即使有这些缺陷,
19:01
many tens of millions of people still find them very useful.
416
1141929
2919
仍有数千万人认为它们非常有用。
19:04
And so that was an interesting update on maybe the convergence of products
417
1144848
4922
这是产品和科学融合的
19:09
and the science that actually,
418
1149770
3712
一次有趣的进步,
19:13
all of these amazing things we've been doing in the lab, so to speak,
419
1153524
3253
我们在实验室里做的 各种有意义的事,
19:16
are actually ready for prime time for general use,
420
1156819
3003
都已经准备好 登上通用的大舞台,
19:19
beyond the rarefied world of science.
421
1159822
2002
走出科学世界的象牙塔。
19:21
And I think that's pretty exciting in many ways.
422
1161824
2627
我认为这在很多方面 都非常令人兴奋。
19:24
CA: So at the moment, we've got this exciting array of products
423
1164910
2961
CA:目前,我们有一系列 令人兴奋的产品,
19:27
which we're all enjoying.
424
1167913
1210
我们都很喜欢。
19:29
And, you know, all this generative AI stuff is amazing.
425
1169164
2586
所有这些生成式 AI 的东西 都太神奇了。
19:31
But let's roll the clock forward a bit.
426
1171750
2086
但让我们把时间向前推一点。
19:34
Microsoft and OpenAI are reported to be building
427
1174503
3962
据报道,微软和 OpenAI 正在打造
19:38
or investing like 100 billion dollars
428
1178507
2336
或投资约 1000 亿美元,
19:40
into an absolute monster database supercomputer
429
1180884
5005
建造一台绝对庞大的 数据库超级计算机,
19:45
that can offer compute at orders of magnitude
430
1185889
3212
它提供的计算能力比我们当今的 任何东西都要高出几个数量级。
19:49
more than anything we have today.
431
1189143
2544
19:52
It takes like five gigawatts of energy to drive this, it's estimated.
432
1192104
3920
据估计,驱动它 大约需要五千兆瓦的能量。
19:56
That's the energy of New York City to drive a data center.
433
1196066
4254
驱动一个数据中心 要花上整个纽约市的能量。
20:00
So we're pumping all this energy into this giant, vast brain.
434
1200612
3420
我们将这些能量 注入这个巨型、庞大的大脑中。
20:04
Google, I presume is going to match this type of investment, right?
435
1204658
4046
我相信谷歌也会进行相应的投资,对吧?
20:09
DH: Well, I mean, we don't talk about our specific numbers,
436
1209037
2795
DH:我们不谈论我们的具体数字,
20:11
but you know, I think we're investing more than that over time.
437
1211874
3336
但我认为我们长期以来的投资 不止这个数。
20:15
So, and that's one of the reasons
438
1215252
1960
因此,这也是我们 在 2014 年与谷歌合作的原因之一,
20:17
we teamed up with Google back in 2014,
439
1217212
2169
20:19
is kind of we knew that in order to get to AGI,
440
1219381
3921
因为我们知道要实现 AGI,
20:23
we would need a lot of compute.
441
1223343
1502
我们需要大量的计算。
20:24
And that's what's transpired.
442
1224887
1501
众所周知。
20:26
And Google, you know, had and still has the most computers.
443
1226430
3420
谷歌无论过去还是现在 都有着最多的计算机。
20:30
CA: So Earth is building these giant computers
444
1230309
2961
CA:地球正在打造 这些巨型计算机,
20:33
that are going to basically, these giant brains,
445
1233270
2294
这些巨型大脑,
20:35
that are going to power so much of the future economy.
446
1235564
2878
将大大助力未来的经济。
20:38
And it's all by companies that are in competition with each other.
447
1238484
3878
而这一切都是公司互相竞争带来的。
20:42
How will we avoid the situation where someone is getting a lead,
448
1242362
5589
我们将如何避免 有人一拿到了消息,
20:47
someone else has got 100 billion dollars invested in their thing.
449
1247993
4213
另一波人就向自己这儿 投了 1000 亿美元。
20:52
Isn't someone going to go, "Wait a sec.
450
1252206
2085
难道没有人会说:“等一下。
20:54
If we used reinforcement learning here
451
1254333
3378
如果我们在这里使用强化学习
20:57
to maybe have the AI tweak its own code
452
1257753
2919
让 AI 调整自己的代码,
21:00
and rewrite itself and make it so [powerful],
453
1260714
2252
重写自己的代码, 让它变得[强大],
21:03
we might be able to catch up in nine hours over the weekend
454
1263008
3212
我们也许可以在周末 花上九个小时就能
21:06
with what they're doing.
455
1266220
1167
做到他们现在正在做的事。
21:07
Roll the dice, dammit, we have no choice.
456
1267429
1960
赌一把吧,该死, 我们别无选择。
21:09
Otherwise we're going to lose a fortune for our shareholders."
457
1269431
2920
不然我们就要 让我们的股东亏一大笔钱了。”
21:12
How are we going to avoid that?
458
1272351
1835
我们要如何避免这种情况?
21:14
DH: Yeah, well, we must avoid that, of course, clearly.
459
1274228
2627
DH:是的,当然, 我们必须要避免这种情况。
21:16
And my view is that as we get closer to AGI,
460
1276855
3587
我的观点是, 随着我们距离 AGI 越来越近,
21:20
we need to collaborate more.
461
1280442
2378
我们需要加强合作。
21:22
And the good news is that most of the scientists involved in these labs
462
1282820
4879
好消息是,参与这些实验室的 大多数科学家
21:27
know each other very well.
463
1287741
1376
彼此非常了解。
21:29
And we talk to each other a lot at conferences and other things.
464
1289117
3546
我们经常在会议和其他场合交流。
21:32
And this technology is still relatively nascent.
465
1292704
2503
这项技术还相对处于起步阶段。
21:35
So probably it's OK what's happening at the moment.
466
1295249
2419
所以目前发生的事情可能没问题。
21:37
But as we get closer to AGI, I think as a society,
467
1297709
4421
但是随着我们越来越接近 AGI, 我认为从社会整体来看,
21:42
we need to start thinking about the types of architectures that get built.
468
1302172
4713
我们需要开始考虑 我们要构建的架构。
21:46
So I'm very optimistic, of course,
469
1306927
1793
当然,我非常乐观,
21:48
that's why I spent my whole life working on AI and working towards AGI.
470
1308762
4838
这就是为什么我一生都在研究 AI 并努力实现 AGI 的原因。
21:53
But I suspect there are many ways to build the architecture safely, robustly,
471
1313600
6507
但我怀疑有很多方法 可以以安全、稳健、
22:00
reliably and in an understandable way.
472
1320148
3170
可靠且易于理解的方式构建架构。
22:03
And I think there are almost certainly going to be ways of building architectures
473
1323318
3837
而且我认为几乎肯定 存在或多或少不安全或有风险的
22:07
that are unsafe or risky in some form.
474
1327155
1836
构建架构的方法。
22:09
So I see a sort of,
475
1329032
2127
我看到了一种, 我们必须让人类跨过的瓶颈,
22:11
a kind of bottleneck that we have to get humanity through,
476
1331201
3087
22:14
which is building safe architectures as the first types of AGI systems.
477
1334329
6340
就是将安全的架构 打造成最初始的 AGI 系统。
22:20
And then after that, we can have a sort of,
478
1340711
2502
在那之后, 我们可以
22:23
a flourishing of many different types of systems
479
1343255
2753
让许多不同类型的系统蓬勃发展,
22:26
that are perhaps sharded off those safe architectures
480
1346049
3712
可能与那些在理想情况下
22:29
that ideally have some mathematical guarantees
481
1349761
3337
有一些数学保证
22:33
or at least some practical guarantees around what they do.
482
1353140
3003
或至少有一些实际保证的 安全架构分开。
22:36
CA: Do governments have an essential role here
483
1356143
2252
CA:在定义公平竞争环境 和绝对禁忌方面,
22:38
to define what a level playing field looks like
484
1358437
2210
政府在这方面 是否起着至关重要的作用?
22:40
and what is absolutely taboo?
485
1360647
1418
22:42
DH: Yeah, I think it's not just about --
486
1362107
1919
DH:是的,我认为这不仅仅是——
22:44
actually I think government and civil society
487
1364067
2127
我认为政府、民间社会、
22:46
and academia and all parts of society have a critical role to play here
488
1366194
3379
学术界和社会各部分 都可以在这里发挥至关重要的作用,
22:49
to shape, along with industry labs,
489
1369573
2878
与行业实验室一起,
22:52
what that should look like as we get closer to AGI
490
1372451
2711
塑造当我们更接近 AGI 时, 它们该有的样子,
22:55
and the cooperation needed and the collaboration needed,
491
1375203
3546
需要企业,需要合作,
22:58
to prevent that kind of runaway race dynamic happening.
492
1378749
2669
防止这种失控竞赛局面的出现。
23:01
CA: OK, well, it sounds like you remain optimistic.
493
1381752
2419
CA:听起来你还是很乐观的。
23:04
What's this image here?
494
1384171
1168
这张照片是什么?
23:05
DH: That's one of my favorite images, actually.
495
1385380
2461
DH:这是我最喜欢的照片之一。
23:07
I call it, like, the tree of all knowledge.
496
1387841
2044
我把它叫做全知之树。
23:09
So, you know, we've been talking a lot about science,
497
1389885
2544
我们一直在谈论科学,
23:12
and a lot of science can be boiled down to
498
1392471
3128
很多科学可以归结为……
23:15
if you imagine all the knowledge that exists in the world
499
1395599
2711
如果你将世界上存在的所有知识
23:18
as a tree of knowledge,
500
1398310
1543
想象成一棵知识树,
23:19
and then maybe what we know today as a civilization is some, you know,
501
1399853
4797
那么我们今天所知道的文明可能只是
23:24
small subset of that.
502
1404691
1418
其中的一小部分。
23:26
And I see AI as this tool that allows us,
503
1406109
2962
我认为 AI 一种工具,它使我们
23:29
as scientists, to explore, potentially, the entire tree one day.
504
1409071
3920
作为科学家 有朝一日能够探索整棵树。
23:33
And we have this idea of root node problems
505
1413033
3503
我们有“根节点”问题,
23:36
that, like AlphaFold, the protein-folding problem,
506
1416578
2336
比如 AlphaFold, 蛋白质折叠问题,
23:38
where if you could crack them,
507
1418956
1459
如果你能破解它,
23:40
it unlocks an entire new branch of discovery or new research.
508
1420415
4713
它就会为发现或新研究 开辟出一个全新的分支。
23:45
And that's what we try and focus on at DeepMind
509
1425629
2252
这就是我们在 DeepMind
23:47
and Google DeepMind to crack those.
510
1427923
2377
和谷歌 DeepMind 努力征服 和关注的点。
23:50
And if we get this right, then I think we could be, you know,
511
1430300
3545
如果我们做对了,那么我认为,
23:53
in this incredible new era of radical abundance,
512
1433887
2711
我们就可以进入 这个相当富足的美妙新时代,
23:56
curing all diseases,
513
1436640
1543
治愈所有疾病,
23:58
spreading consciousness to the stars.
514
1438225
2210
向群星传播意识。
24:01
You know, maximum human flourishing.
515
1441144
1919
人类的极度繁荣。
24:03
CA: We're out of time,
516
1443063
1168
CA:我们没时间了,
24:04
but what's the last example of like, in your dreams,
517
1444272
2461
但是最后举个例子, 在你的梦想中,
24:06
this dream question that you think there is a shot
518
1446733
2962
这个梦中的问题是: 你认为在你有生之年,
24:09
that in your lifetime AI might take us to?
519
1449736
2670
AI 能带我们去向何方?
24:12
DH: I mean, once AGI is built,
520
1452447
2294
DH:一旦建成 AGI,
24:14
what I'd like to use it for is to try and use it to understand
521
1454783
3295
我想用它理解现实的基本本质。
24:18
the fundamental nature of reality.
522
1458120
2252
24:20
So do experiments at the Planck scale.
523
1460372
2836
在普朗克尺度的极限做实验。
24:23
You know, the smallest possible scale, theoretical scale,
524
1463250
3295
极限小的尺度,理论尺度,
24:26
which is almost like the resolution of reality.
525
1466586
2253
就像是现实的分辨率。
24:29
CA: You know, I was brought up religious.
526
1469798
2002
CA:我从小就信奉宗教。
24:31
And in the Bible, there’s a story about the tree of knowledge
527
1471800
2878
在《圣经》中,有一个 关于知识之树的故事,
24:34
that doesn't work out very well.
528
1474720
1543
但结果不怎么样。
24:36
(Laughter)
529
1476304
1544
(笑声)
24:37
Is there any scenario
530
1477848
3628
有没有什么情形
24:41
where we discover knowledge that the universe says,
531
1481518
5297
会让我们发现这样的知识,宇宙说:
24:46
"Humans, you may not know that."
532
1486815
2753
“人类,你可能还不知道吧。”
24:49
DH: Potentially.
533
1489943
1210
DH:有可能。
24:51
I mean, there might be some unknowable things.
534
1491153
2210
可能有一些不得而知的事情。
24:53
But I think scientific method is the greatest sort of invention
535
1493363
5089
但我认为,科学方法是
人类有史以来最伟大的发明。
24:58
humans have ever come up with.
536
1498493
1460
24:59
You know, the enlightenment and scientific discovery.
537
1499995
3545
启蒙运动和科学发现。
25:03
That's what's built this incredible modern civilization around us
538
1503582
3336
它们铸就了我们身处的伟大现代文明
25:06
and all the tools that we use.
539
1506960
2002
和我们使用的各种工具。
25:08
So I think it's the best technique we have
540
1508962
2669
我认为这是我们 了解身边浩渺宇宙的最佳方式。
25:11
for understanding the enormity of the universe around us.
541
1511673
3545
25:15
CA: Well, Demis, you've already changed the world.
542
1515677
2378
CA:戴密斯,你已经改变了世界。
25:18
I think probably everyone here will be cheering you on
543
1518055
3211
我想可能在座的每个人 都会为你加油,
25:21
in your efforts to ensure that we continue to accelerate
544
1521266
3086
努力争取我们继续 朝着正确的方向加速。
25:24
in the right direction.
545
1524352
1252
25:25
DH: Thank you.
546
1525645
1168
DH:谢谢。
25:26
CA: Demis Hassabis.
547
1526813
1210
CA:戴密斯·哈萨比斯。
25:28
(Applause)
548
1528065
5338
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog