This computer is learning to read your mind | DIY Neuroscience, a TED series

127,089 views ・ 2018-09-15

TED


請雙擊下方英文字幕播放視頻。

00:00
Translator: Joseph Geni Reviewer: Krystian Aparta
0
0
7000
譯者: Joey Chung 審譯者: 至磊Zi Le 黃Ng
00:12
Greg Gage: Mind-reading. You've seen this in sci-fi movies:
1
12203
2859
葛列格·蓋奇 (GG):讀心術。 你在科幻電影中曾看過:
00:15
machines that can read our thoughts.
2
15086
1857
可以讀出我們想法的機器。
00:16
However, there are devices today
3
16967
1798
然而,如今有很多機器
00:18
that can read the electrical activity from our brains.
4
18789
2524
可以讀出我們大腦中的電波。
00:21
We call this the EEG.
5
21337
1272
我們稱之為 「腦波圖」。
00:23
Is there information contained in these brainwaves?
6
23695
2829
這些腦波中含有資訊嗎?
00:26
And if so, could we train a computer to read our thoughts?
7
26548
2813
如果含有資訊,
我們可以訓練電腦 讀懂我們的思想嗎?
00:29
My buddy Nathan has been working to hack the EEG
8
29385
2904
我的好友內森一直 致力研究如何破解腦波圖
00:32
to build a mind-reading machine.
9
32313
1676
以建造一台可以讀心的機器。
00:34
[DIY Neuroscience]
10
34013
2457
【DIY 神經科學】
00:36
So this is how the EEG works.
11
36939
1561
先介紹一下腦波圖的原理。
00:38
Inside your head is a brain,
12
38524
1844
你的頭裡有大腦,
00:40
and that brain is made out of billions of neurons.
13
40392
2558
而大腦是由數十億個神經元構成。
00:42
Each of those neurons sends an electrical message to each other.
14
42974
3007
每個神經元都在互相傳送電子訊息。
00:46
These small messages can combine to make an electrical wave
15
46005
2814
這些微小的訊息可以結合在一起,
00:48
that we can detect on a monitor.
16
48843
1570
形成顯示器上探測到的電波。
00:50
Now traditionally, the EEG can tell us large-scale things,
17
50437
2724
傳統來說,
腦波圖能告訴我們大維度的事情,
00:53
for example if you're asleep or if you're alert.
18
53185
2350
例如你是睡著還是清醒著。
00:55
But can it tell us anything else?
19
55559
1594
但是它可以告訴我們其它事情嗎?
00:57
Can it actually read our thoughts?
20
57177
1702
它是否能夠讀出我們心中所想?
00:58
We're going to test this,
21
58903
1219
我們要測試這一點,
01:00
and we're not going to start with some complex thoughts.
22
60146
2623
而我們不會從一些複雜的想法開始。
01:02
We're going to do something very simple.
23
62793
1977
我們會從一些非常簡單的事情開始。
01:04
Can we interpret what someone is seeing using only their brainwaves?
24
64794
3253
我們只需要依據腦波 就可以判讀一個人看到了什麼嗎?
01:08
Nathan's going to begin by placing electrodes on Christy's head.
25
68071
3000
內森先在克莉絲蒂的頭上安裝電極。
01:11
Nathan: My life is tangled.
26
71095
1523
內森:我的生命亂成一團。
01:12
(Laughter)
27
72642
1150
(笑聲)
01:14
GG: And then he's going to show her a bunch of pictures
28
74152
2584
GG:之後他會給她看一些圖片,
01:16
from four different categories.
29
76760
1521
圖片來自四個不同類別。
01:18
Nathan: Face, house, scenery and weird pictures.
30
78305
2654
內森:面孔、房子、 風景、古怪的圖片。
01:20
GG: As we show Christy hundreds of these images,
31
80983
2498
GG:當我們向克莉絲蒂 展示數百張這種圖片時,
01:23
we are also capturing the electrical waves onto Nathan's computer.
32
83505
3543
內森的電腦捕捉了她的腦波。
01:27
We want to see if we can detect any visual information about the photos
33
87072
3386
我們想知道我們能否偵測
腦波中有關這些圖片的視覺資訊。
01:30
contained in the brainwaves,
34
90482
1352
01:31
so when we're done, we're going to see if the EEG
35
91858
2331
當實驗結束後,
我們將會看到腦波圖是否可以 告訴我們克莉絲蒂在看哪種圖片,
01:34
can tell us what kind of picture Christy is looking at,
36
94213
2598
01:36
and if it does, each category should trigger a different brain signal.
37
96835
3584
即是不同種類的圖片, 會否觸發不同的大腦信號。
01:40
OK, so we collected all the raw EEG data,
38
100443
2628
我們收集完了所有原始腦波圖資料,
01:43
and this is what we got.
39
103095
1150
這是我們的成果。
01:45
It all looks pretty messy, so let's arrange them by picture.
40
105389
2938
看上去很混亂, 我們來根據圖片類別分類。
01:48
Now, still a bit too noisy to see any differences,
41
108826
2656
現在,還是有點太雜亂, 無法看出任何區別,
01:51
but if we average the EEG across all image types
42
111506
3040
但是如果將圖片出現的時間對齊,
01:54
by aligning them to when the image first appeared,
43
114570
2436
並對每種類別的腦波圖取平均值,
01:57
we can remove this noise,
44
117030
1617
就能移除其中的雜亂。
01:58
and pretty soon, we can see some dominant patterns
45
118671
2334
很快我們便從各個類別中 看到一些主要的規律。
02:01
emerge for each category.
46
121029
1564
02:02
Now the signals all still look pretty similar.
47
122617
2156
現在這些信號看起來 仍然是很相似。
02:04
Let's take a closer look.
48
124797
1215
讓我們再仔細看看。
02:06
About a hundred milliseconds after the image comes on,
49
126036
2525
大約在一張圖片出現一百毫秒後,
02:08
we see a positive bump in all four cases,
50
128585
2628
我們在四個類別中 都看到了正向波動,
02:11
and we call this the P100, and what we think that is
51
131237
2789
我們把它叫作 P100 ,
我們認為這是當你識別物體時 大腦中發生的活動。
02:14
is what happens in your brain when you recognize an object.
52
134050
3075
02:17
But damn, look at that signal for the face.
53
137149
2086
但糟糕了,看看面孔圖片的信號,
02:19
It looks different than the others.
54
139259
1711
它看起來與其他的不同,
02:20
There's a negative dip about 170 milliseconds
55
140994
2890
在圖片出現後約 170 毫秒,
02:23
after the image comes on.
56
143908
1540
出現了負向波動。
02:25
What could be going on here?
57
145472
1750
這裡可能發生了什麼事?
02:27
Research shows that our brain has a lot of neurons that are dedicated
58
147246
3240
研究顯示,
我們大腦有大量神經元 專門負責識別人類的面孔,
02:30
to recognizing human faces,
59
150510
1459
02:31
so this N170 spike could be all those neurons
60
151993
2844
所以這個 N170 腦電負成分 可能是由這些神經元產生
02:34
firing at once in the same location,
61
154861
1985
在同一個地方同時啟動,
02:36
and we can detect that in the EEG.
62
156870
1634
而我們可以在腦波圖中探測到。
02:39
So there are two takeaways here.
63
159083
1820
於是這裡有兩個結論:
02:40
One, our eyes can't really detect the differences in patterns
64
160927
3085
第一,在沒有進行平均法降噪時,
我們的眼睛不能識別 腦波規律的不同;
02:44
without averaging out the noise,
65
164036
1571
02:45
and two, even after removing the noise,
66
165631
2237
第二,即使移除雜訊後,
02:47
our eyes can only pick up the signals associated with faces.
67
167892
3001
我們的眼睛也只能 識別出和面孔有關的信號。
02:50
So this is where we turn to machine learning.
68
170917
2268
於是我們在此轉而借助機器學習。
02:53
Now, our eyes are not very good at picking up patterns in noisy data,
69
173209
3976
我們的眼睛並不擅長 在雜訊中發現規律,
02:57
but machine learning algorithms are designed to do just that,
70
177209
2946
但是機器學習演算法的設計 可以解決這類問題。
03:00
so could we take a lot of pictures and a lot of data
71
180179
3201
所以我們能否將許多圖片和資料
03:03
and feed it in and train a computer
72
183404
1790
輸入到電腦中進行訓練,
03:05
to be able to interpret what Christy is looking at in real time?
73
185218
3381
從而即時判斷克莉絲蒂 究竟正在看什麼?
03:09
We're trying to code the information that's coming out of her EEG
74
189088
4117
我們嘗試將她的腦波圖資訊
03:13
in real time
75
193229
1175
進行即時編碼,
03:14
and predict what it is that her eyes are looking at.
76
194428
2461
並預測她眼睛在看什麼東西。
03:16
And if it works, what we should see
77
196913
1727
如果這樣有效,
我們應該能看到 每當她看到風景的圖片時,
03:18
is every time that she gets a picture of scenery,
78
198664
2381
03:21
it should say scenery, scenery, scenery, scenery.
79
201069
2286
機器顯示風景、風景、風景、風景,
03:23
A face -- face, face, face, face,
80
203379
1957
看到面孔── 面孔、面孔、面孔、面孔,
03:25
but it's not quite working that way, is what we're discovering.
81
205360
3531
但是我們發現,實際上並非如此。
03:33
(Laughter)
82
213385
3548
(笑聲)
03:36
OK.
83
216957
1151
好的。
03:38
Director: So what's going on here? GG: We need a new career, I think.
84
218132
3382
導演:怎麼了? GG:我覺得我們應該轉行。
03:41
(Laughter)
85
221538
1070
(笑聲)
03:42
OK, so that was a massive failure.
86
222632
2444
好吧,所以剛剛那個是重大失敗。
03:45
But we're still curious: How far could we push this technology?
87
225100
3212
但是我們依然好奇: 我們能將這項技術推展到多遠?
03:48
And we looked back at what we did.
88
228336
1640
於是我們回顧做法。
03:50
We noticed that the data was coming into our computer very quickly,
89
230000
3143
我們發現資料飛快湧入電腦,
03:53
without any timing of when the images came on,
90
233167
2241
但沒有對圖片出現的時間進行計時,
03:55
and that's the equivalent of reading a very long sentence
91
235432
2876
這等同於讀一個 在單詞間沒有空格的長句。
03:58
without spaces between the words.
92
238332
1605
03:59
It would be hard to read,
93
239961
1438
這樣的句子很難讀懂,
04:01
but once we add the spaces, individual words appear
94
241423
3713
但是只要我們添加了空格, 我們就能看到獨立的單詞,
04:05
and it becomes a lot more understandable.
95
245160
2044
句子也就變得容易理解得多,
04:07
But what if we cheat a little bit?
96
247228
1847
但如果我們作一點弊呢?
04:09
By using a sensor, we can tell the computer when the image first appears.
97
249099
3537
透過使用感測器,
我們能告訴電腦 每張圖片出現的時間。
04:12
That way, the brainwave stops being a continuous stream of information,
98
252660
3602
這樣,腦波就不再是 一個沒有間斷的資訊串流,
04:16
and instead becomes individual packets of meaning.
99
256286
2711
而是變成了一個個有意義的封包。
04:19
Also, we're going to cheat a little bit more,
100
259021
2368
另外,我們還要再作弊一下,
04:21
by limiting the categories to two.
101
261413
1812
把圖片限制到兩個類別。
04:23
Let's see if we can do some real-time mind-reading.
102
263249
2383
讓我們看看我們是否能夠即時讀心。
04:25
In this new experiment,
103
265656
1235
在這個新實驗中,
04:26
we're going to constrict it a little bit more
104
266915
2097
我們將限制實驗條件,
04:29
so that we know the onset of the image
105
269036
2252
這樣我們就會知道圖片出現的時間,
04:31
and we're going to limit the categories to "face" or "scenery."
106
271312
3382
並將類別限制為「面孔」或「風景」。
04:35
Nathan: Face. Correct.
107
275097
1511
內森:面孔,正確。
04:37
Scenery. Correct.
108
277780
1351
風景,正確。
04:40
GG: So right now, every time the image comes on,
109
280251
2373
GG:所以現在每當圖片出現時,
04:42
we're taking a picture of the onset of the image
110
282648
2266
我們對圖片出現的時刻進行記錄,
04:44
and decoding the EEG.
111
284938
1695
並對腦波圖解碼。
04:46
It's getting correct.
112
286657
1256
它變得越來越正確。
04:47
Nathan: Yes. Face. Correct.
113
287937
1579
內森:是的,面孔,正確。
04:49
GG: So there is information in the EEG signal, which is cool.
114
289540
2859
GG:所以腦波圖的信號中 包含資訊,這很棒。
04:52
We just had to align it to the onset of the image.
115
292423
2537
我們僅僅需要把它 和圖片出現的時刻對齊。
04:55
Nathan: Scenery. Correct.
116
295307
1311
內森:風景,正確。
04:59
Face. Yeah.
117
299344
1150
面孔,沒錯。
05:00
GG: This means there is some information there,
118
300518
2288
GG:這意味著它包含了一些資訊,
05:02
so if we know at what time the picture came on,
119
302830
2913
如果我們知道圖片出現的時間,
05:05
we can tell what type of picture it was,
120
305767
1999
我們就有可能判斷 它是哪個類別的圖片,
05:07
possibly, at least on average, by looking at these evoked potentials.
121
307790
5096
至少一般可以做到, 只要根據這些由圖片誘發的電位。
05:12
Nathan: Exactly.
122
312910
1325
內森:說得沒錯。
05:14
GG: If you had told me at the beginning of this project this was possible,
123
314259
3521
GG:如果你一開始跟我說, 這個計畫有可能實現,
05:17
I would have said no way.
124
317804
1251
我會說,怎麼可能。
我真的覺得我們不可能做到。
05:19
I literally did not think we could do this.
125
319079
2000
我們的讀心術實驗真的成功了嗎?
05:21
Did our mind-reading experiment really work?
126
321103
2066
05:23
Yes, but we had to do a lot of cheating.
127
323193
1975
成功了,但是我們必須作很多弊。
05:25
It turns out you can find some interesting things in the EEG,
128
325192
2905
結果就是,你能透過腦波圖 發現一些有趣的事,
05:28
for example if you're looking at someone's face,
129
328121
2290
比如你是否在看某人的臉,
05:30
but it does have a lot of limitations.
130
330435
2157
但它確實有很多限制。
05:32
Perhaps advances in machine learning will make huge strides,
131
332616
2946
也許機器學習領域的進步 會帶來更多重大突破。
05:35
and one day we will be able to decode what's going on in our thoughts.
132
335586
3390
有朝一日,我們能夠解碼心中所想。
05:39
But for now, the next time a company says that they can harness your brainwaves
133
339000
4077
可是就現在來說,
當有公司說它能利用 你的腦波控制設備,
05:43
to be able to control devices,
134
343101
1750
05:44
it is your right, it is your duty to be skeptical.
135
344875
3310
保持懷疑是你的權利和責任。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog