Is AI Progress Stuck? | Jennifer Golbeck | TED

140,226 views ・ 2024-11-19

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Jinnie Sun
00:04
We've built artificial intelligence already
0
4334
2878
我们已经打造出了在某些任务上 比人类表现更佳的人工智能。
00:07
that, on specific tasks, performs better than humans.
1
7212
3837
00:11
There's AI that can play chess and beat human grandmasters.
2
11049
4505
有会下国际象棋 并击败人类特级大师的 AI。
00:15
But since the introduction of generative AI
3
15595
2336
但自从几年前 生成式 AI 的问世,
00:17
to the general public a couple years ago,
4
17973
2544
00:20
there's been more talk about artificial general intelligence, or AGI,
5
20517
5297
人们更常讨论通用人工智能, 即 AGI,
00:25
and that describes the idea
6
25814
1418
这一概念指的是
00:27
that there's AI that can perform at or above human levels
7
27232
3879
有一种以匹敌或超越人类水平
00:31
on a wide variety of tasks, just like we humans are able to do.
8
31152
4004
完成一众任务的 AI, 就如同我们人类的能力。
00:35
And people who think about AGI are worried about what it means
9
35615
3587
思考 AGI 的人们在顾虑它意味着什么,
00:39
if we reach that level of performance in the technology.
10
39244
3754
当这项科技达到了那种能力水平。
00:42
Right now, there's people from the tech industry
11
42998
2252
如今,科技届的人们跑出来说:
00:45
coming out and saying
12
45292
1126
00:46
"The AI that we're building is so powerful and dangerous
13
46459
2962
“我们打造的 AI 太强大了,太危险了,
00:49
that it poses a threat to civilization.”
14
49462
2711
可能危害人类文明。”
00:52
And they’re going to government and saying,
15
52173
2002
他们跑去政府说:
00:54
"Maybe you need to regulate us."
16
54217
1794
“也许你得管管我们。”
00:56
Now normally when an industry makes a powerful new tool,
17
56052
2878
通常当一个行业做出了 一个强大的新工具,
00:58
they don't say it poses an existential threat to humanity
18
58930
2920
他们不会说它 置人类于危急存亡之秋中,
01:01
and that it needs to be limited, so why are we hearing that language?
19
61891
3963
也不会说它该受到限制, 那我们为什么会听到这种说法呢?
01:05
And I think there's two main reasons.
20
65895
2128
我认为有两个主要原因。
01:08
One is if your technology is so powerful
21
68064
4046
一是如果你的科技太强大了,
01:12
that it can destroy civilization, between now and then,
22
72152
4171
甚至有可能摧毁文明,
那么从现在开始到毁灭前,
01:16
there's an awful lot of money to be made with that.
23
76364
3003
其间能赚一笔大钱。
01:19
And what better way to convince your investors
24
79409
2461
还有什么比警告别人 你的工具太危险了
01:21
to put some money with you
25
81911
1252
更能说服投资人 给你多投点钱的呢?
01:23
than to warn that your tool is that dangerous?
26
83204
3045
01:26
The other is that the idea of AI overtaking humanity
27
86291
3587
另一个原因是 AI 超越人类这一想法
01:29
is truly a cinematic concept.
28
89878
2169
完全是个电影里的概念。
01:32
We’ve all seen those movies.
29
92088
2127
我们都看过这种电影。
01:34
And it’s kind of entertaining to think about what that would mean now
30
94215
3379
现在再去想想那些电影的意义 还是挺有意思的,
01:37
with tools that we're actually able to put our hands on.
31
97636
3461
当我们真的有了摸得着的工具,
01:41
In fact, it’s so entertaining that it’s a very effective distraction
32
101097
4505
有意思到它其实有效地让人们不去想
01:45
from the real problems already happening in the world because of AI.
33
105644
4879
世界上那些由 AI 带来的真实问题。
01:50
The more we think about these improbable futures,
34
110565
3879
我们对这种低可能的未来想得越多,
01:54
the less time we spend thinking about how do we correct deepfakes
35
114486
4004
我们就会花更少的时间 思考如何纠正深度伪造,
01:58
or the fact that there's AI right now being used to decide
36
118531
3462
或者纠正现在用 AI 决定
02:01
whether or not people are let out of prison,
37
121993
2086
囚犯该不该出狱,
02:04
and we know it’s racially biased.
38
124079
2127
即使我们知道 AI 带有种族歧视。
02:06
But are we anywhere close to actually achieving AGI?
39
126665
3503
但我们很快要真正实现 AGI 了吗?
02:10
Some people think so.
40
130210
1334
有些人认为是的。
02:11
Elon Musk said that we'll achieve it within a year.
41
131544
2419
埃隆·马斯克说 我们会在一年内实现。
02:13
I think he posted this a few weeks ago.
42
133963
2128
他应该几周前发了这个帖子。
02:16
But like at the same time
43
136132
1502
但与此同时,
02:17
Google put out their eye search tool that's supposed to give you the answer
44
137676
3753
谷歌推出了 AI 搜索工具, 不用点击链接即可得到答案,
02:21
so you don’t have to click on a link,
45
141471
1919
02:23
and it's not going super well.
46
143431
2169
效果不是特别好。
02:25
["How many rocks should I eat?"]
47
145642
1543
[“我应该吃多少石头?”]
02:27
["... at least a single serving of pebbles, geodes or gravel ..."]
48
147227
3128
[“……至少一份鹅卵石、 晶洞或砾石……”]
02:30
Please don't eat rocks.
49
150355
1209
不要去吃石头。
02:31
(Laughter)
50
151564
1168
(笑声)
02:32
Now of course these tools are going to get better.
51
152732
3003
当然这些工具会变好的。
02:35
But if we're going to achieve AGI
52
155777
2836
但如果我们要实现 AGI,
02:38
or if they're even going to fundamentally change the way we work,
53
158613
3420
或者要让它彻底改变我们工作的方式,
02:42
we need to be in a place where they are continuing
54
162075
2628
我们需要让它一直处于 能力飞速提升的趋势中。
02:44
on a sharp upward trajectory in terms of their abilities.
55
164703
3795
02:48
And that may be one path.
56
168498
1835
这可能是一种趋势。
02:50
But there's also the possibility that what we're seeing
57
170375
2586
但我们还看到了另一种可能性: 这些工具已经达到了
02:53
is that these tools have basically achieved
58
173002
2420
02:55
what they're capable of doing,
59
175422
1501
它们能够做到的水平,
02:56
and the future is incremental improvements in a plateau.
60
176923
4129
未来是基于稳定水平的逐步改良。
03:01
So to understand the AI future,
61
181052
2211
要理解 AI 未来,
03:03
we need to look at all the hype around it and get under there
62
183304
2920
我们得看穿关于它的 各种炒作,深入研究,
03:06
and see what's technically possible.
63
186266
1751
看看从技术上什么是有可能的。
03:08
And we also need to think about where are the areas that we need to worry
64
188017
3462
我们也要考虑 我们需要担心哪几块,
03:11
and where are the areas that we don't.
65
191479
1835
不需要担心哪几块。
03:13
So if we want to realize the hype around AI,
66
193857
3086
如果我们想实现 AI 相关的炒作,
03:16
the one main challenge that we have to solve is reliability.
67
196985
3712
我们需要解决的 一个主要问题就是可靠性。
03:20
These algorithms are wrong all the time, like we saw with Google.
68
200697
4421
这些算法一直是错的, 就像我们看到谷歌的例子。
03:25
And Google actually came out and said,
69
205118
2002
谷歌其实曾站出来表示过,
03:27
after these bad search results were popularized,
70
207162
3211
在这些糟糕的搜索结果广泛传播后,
03:30
that they don't know how to fix this problem.
71
210415
2169
称他们也不知道 该怎么解决这个问题。
03:32
I use ChatGPT every day.
72
212625
1335
我每天都用 ChatGPT。
03:34
I write a newsletter that summarizes discussions on far-right message boards,
73
214002
3754
我在写一份订阅新闻稿, 总结极右翼留言板上的讨论,
03:37
and so I download that data,
74
217797
1377
我下载了这些数据,
03:39
ChatGPT helps me write a summary.
75
219174
1918
ChatGPT 帮我写一份总结。
03:41
And it makes me much more efficient than if I had to do it by hand.
76
221134
4546
比起我手动去完成要高效多了。
03:45
But I have to correct it every day
77
225722
2044
但是我每天都得纠正它,
03:47
because it misunderstands something,
78
227766
1751
因为它会误解一些事,
03:49
it takes out the context.
79
229559
1793
会断章取义。
03:51
And so because of that,
80
231394
1877
因此,
03:53
I can't just rely on it to do the job for me.
81
233313
2752
我不能完全依赖它帮我完成工作。
03:56
And this reliability is really important.
82
236107
2878
这种可靠性非常重要。
03:58
Now a subpart of reliability in this space is AI hallucination,
83
238985
5255
这一领域中的可靠性 有一部分是 AI 幻觉,
04:04
a great technical term for the fact that AI just makes stuff up
84
244282
3587
这是一个很好的技术术语, 描述了 AI 很多时候都在乱编。
04:07
a lot of the time.
85
247911
1418
04:09
I did this in my newsletter.
86
249370
1377
我在我的新闻稿里这么做了。
04:10
I said, ChatGPT are there any people threatening violence?
87
250747
3128
我说:“ChatGPT, 有没有人威胁要使用暴力?
04:13
If so, give me the quotes.
88
253917
1251
有的话,给我原句。”
04:15
And it produced these three really clear threats of violence
89
255210
2919
然后它输出了这三条 显然是威胁使用暴力的信息,
04:18
that didn't sound anything like people talk
90
258171
2002
但是听起来并不像 人们会发在留言板上的内容。
04:20
on these message boards.
91
260215
1167
04:21
And I went back to the data, and nobody ever said it.
92
261424
2503
于是我回到数据中, 根本没人说过。
04:23
It just made it up out of thin air.
93
263927
2252
它就是凭空捏造出来的。
04:26
And you may have seen this if you've used an AI image generator.
94
266221
3044
如果你用过 AI 图片生成器, 你可能也见过这种情况。
04:29
I asked it to give me a close up of people holding hands.
95
269265
3295
我让它给我一张人们牵手的特写。
04:32
That's a hallucination and a disturbing one at that.
96
272602
3295
这就是一种 AI 幻觉, 让人看着挺不舒服的。
04:35
(Laughter)
97
275939
1710
(笑声)
04:37
We have to solve this hallucination problem
98
277649
3086
我们得解决幻觉问题,
04:40
if this AI is going to live up to the hype.
99
280777
3003
如果 AI 要匹配炒作的水平。
04:43
And I don't think it's a solvable problem.
100
283780
2878
我觉得这不是一个可以解决的问题,
04:46
With the way this technology works, there are people who say,
101
286699
2878
鉴于这项技术的工作原理,
有些人会说我们在几个月内 就能搞定这个问题,
04:49
we're going to have it taken care of in a few months,
102
289619
2544
04:52
but there’s no technical reason to think that’s the case.
103
292163
2711
但是这种言论并没有什么技术依据。
04:54
Because generative AI always makes stuff up.
104
294874
3420
因为生成式 AI 总是在瞎编。
04:58
When you ask it a question,
105
298294
1418
你问了一个问题,
04:59
it's creating that answer or creating that image from scratch
106
299754
4254
它就在你问的时候 凭空创造一个答案或者图片。
05:04
when you ask.
107
304050
1168
05:05
It's not like a search engine that goes and finds the right answer on a page.
108
305218
3670
而不是像搜索引擎那样 找出某个页面上的正确答案。
05:08
And so because its job is to make things up every time,
109
308888
3879
由于它的任务就是每次乱编,
05:12
I don't know that we're going to be able to get it to make up correct stuff
110
312767
3587
我都不知道我们能不能 让它编出正确的东西,
05:16
and then not make up other stuff.
111
316354
1627
不要编别的东西。
05:17
That's not what it's trained to do,
112
317981
1710
这不是它被训练做的事情。
05:19
and we're very far from achieving that.
113
319732
2128
我们距离实现这一点还有很远。
05:21
And in fact, there are spaces where they're trying really hard.
114
321901
3170
事实上有一些人们正在 为之努力的领域。
05:25
One space that there's a lot of enthusiasm for AI
115
325113
2627
热衷于使用 AI 的一个领域
05:27
is in the legal area
116
327740
1335
是法律领域,
05:29
where they hope it will help write legal briefs or do research.
117
329117
3420
人们希望 AI 可以帮忙 写法律摘要或者进行法律研究。
05:32
Some people have found out the hard way
118
332579
2168
有些人折腾了一番以后发现
05:34
that they should not write legal briefs right now with ChatGPT
119
334789
3837
现在还不能用 ChatGPT 写法律摘要、
05:38
and send them to federal court,
120
338668
1501
发给联邦法院,
05:40
because it just makes up cases that sound right.
121
340211
3379
因为它会编出一些 听起来没问题的案件。
05:43
And that's a really fast way to get a judge mad at you
122
343631
2836
这会轻轻松松激怒法官,
05:46
and to get your case thrown out.
123
346509
1752
拒绝受理你的案件。
05:49
Now there are legal research companies right now
124
349012
2544
现在有些法律研究公司
05:51
that advertise hallucination-free
125
351598
2961
号称他们在使用“无幻觉”生成式 AI。
05:54
generative AI.
126
354559
1626
05:56
And I was really dubious about this.
127
356561
3003
我对此非常怀疑。
05:59
And researchers at Stanford actually went in and checked it,
128
359564
3628
斯坦福的研究人员参与并进行了调查,
06:03
and they found the best-performing of these hallucination-free tools
129
363192
3754
他们发现这些“无幻觉”工具中 表现最好的一个
06:06
still hallucinates 17 percent of the time.
130
366946
2544
也有 17% 的时候会产生幻觉。
06:10
So like on one hand,
131
370158
1626
所以说,一方面,
06:11
it's a great scientific achievement that we have built a tool
132
371826
3629
这是一项伟大的科学成就, 我们打造了一个工具,
06:15
that we can pose basically any query to,
133
375496
2920
可以向它提出任何查询内容,
06:18
and 60 or 70 or maybe even 80 percent of the time
134
378458
3211
60%、70% 甚至是 80% 的时间
06:21
it gives us a reasonable answer.
135
381711
1919
它能给出合理的答案。
06:23
But if we're going to rely on using those tools
136
383963
2252
但如果我们要依赖这些工具,
06:26
and they're wrong 20 or 30 percent of the time,
137
386257
2670
而它们有 20% 或 30% 的概率是错的,
06:28
there's no model where that's really useful.
138
388927
2961
那就没有一个真的很有用的模型。
06:32
And that kind of leads us into
139
392472
2043
这就引出了一个问题,
06:34
how do we make these tools that useful?
140
394557
2002
我们怎么能让这些工具变得有用呢?
06:36
Because even if you don't believe me
141
396601
1752
因为即使你不相信我,
06:38
and think we're going to solve this hallucination problem,
142
398353
2711
认为我们可以解决这个幻觉问题,
06:41
we're going to solve the reliability problem,
143
401105
2127
我们可以解决可靠性问题,
06:43
the tools still need to get better than they are now.
144
403274
2503
这些工具仍然需要 比现在的水平更进一步。
06:45
And there's two things they need to do that.
145
405777
2085
为此需要两件事。
06:47
One is lots more data
146
407862
1168
第一,更多的数据,
06:49
and two is the technology itself has to improve.
147
409072
2294
第二,技术本身得进步。
06:51
So where are we going to get that data?
148
411783
1960
那么我们从哪儿获取这些数据呢?
06:53
Because they've kind of taken all the reliable stuff online already.
149
413785
3837
因为它们几乎已经获取了 线上所有可靠的内容了。
06:57
And if we were to find twice as much data as they've already had,
150
417622
3295
如果我们要寻找 比现在已有更多一倍的数据,
07:00
that doesn't mean they're going to be twice as smart.
151
420959
2502
并不代表它会变两倍的聪明。
07:04
I don't know if there's enough data out there,
152
424295
2169
我不知道有没有足够的数据,
07:06
and it's compounded by the fact
153
426506
1501
而且情况比较复杂,
07:08
that one way the generative AI has been very successful
154
428049
2920
因为生成式 AI 很擅长的一点就是
07:10
is at producing low-quality content online.
155
430969
3211
生成线上的低质量内容。
07:14
That's bots on social media, misinformation,
156
434222
3253
社交媒体上的机器人、虚假信息,
07:17
and these SEO pages that don't really say anything
157
437475
2377
还有那些搜索引擎优化的 推荐网页,言之无物,
07:19
but have a lot of ads and come up high in the search results.
158
439894
3212
但是有一大堆广告, 在搜索结果中遥遥领先。
07:23
And if the AI starts training on pages that it generated,
159
443106
4254
如果 AI 开始基于它生成的网页训练,
07:27
we know from decades of AI research that they just get progressively worse.
160
447360
4463
根据数十年来的 AI 研究, 我们都知道它们会逐渐退步。
07:31
It's like the digital version of mad cow disease.
161
451823
2794
那就像数字版本的疯牛病。
07:34
(Laughter)
162
454951
1626
(笑声)
07:36
Let's say we solve the data problem.
163
456577
2336
假设我们解决了数据问题。
07:39
You still have to get the technology better.
164
459247
2169
你还是得改良技术。
07:41
And we've seen 50 billion dollars in the last couple years
165
461457
3379
过去几年里, 我们看到了 500 亿美元
07:44
invested in improving generative AI.
166
464836
3128
被投入改良生成式 AI。
07:48
And that's resulted in three billion dollars in revenue.
167
468006
3336
得到了 30 亿美元的收入。
07:51
So that's not sustainable.
168
471342
1585
所以这是不可持续的。
07:52
But of course it's early, right?
169
472927
1543
但是当然它还在早期,对吧?
07:54
Companies may find ways to start using this technology.
170
474512
2586
企业可能会找到用这项技术的方式。
07:57
But is it going to be valuable enough
171
477140
2752
但是它的价值是否足以
07:59
to justify the tens and maybe hundreds of billions of dollars
172
479934
3170
证明数百亿,甚至数千亿美元
08:03
of hardware that needs to be bought
173
483146
2586
在优化这些模型所需购置的 硬件上的花费是值得的呢?
08:05
to make these models get better?
174
485773
1835
08:08
I don't think so.
175
488109
1126
我觉得不能。
08:09
And we can kind of start looking at practical examples to figure that out.
176
489277
3545
我们看看实际的例子就知道了。
08:12
And it leads us to think about where are the spaces we need to worry and not.
177
492864
3670
那能让我们思考我们 需要担心、不需要担心什么领域。
08:16
Because one place that everybody's worried with this
178
496576
2502
因为每个人对此担心的一点是
08:19
is that AI is going to take all of our jobs.
179
499120
2085
AI 会抢走我们所有的工作。
08:21
Lots of people are telling us that’s going to happen,
180
501247
2503
很多人告诉我们会是这样的,
08:23
and people are worried about it.
181
503750
1543
于是人们对此非常担心。
08:25
And I think there's a fundamental misunderstanding at the heart of that.
182
505293
3420
我认为其中有一个关键的误解。
08:28
So imagine this scenario.
183
508713
1209
想象这个场景。
08:29
We have a company,
184
509922
1168
有一家公司,
08:31
and they can afford to employ two software engineers.
185
511090
2628
他们请得起两位软件工程师。
08:33
And if we were to give those engineers some generative AI to help write code,
186
513760
4004
如果我们给这两位工程师 一些生成式 AI,帮助他们写代码,
08:37
which is something it's pretty good at,
187
517805
1877
这是 AI 很擅长的,
08:39
let's say they're twice as efficient.
188
519682
1794
假设他们的效率翻了一番。
08:41
That's a big overestimate, but it makes the math easy.
189
521517
3462
这是过高的估计了, 但是简单起见就这么算吧。
08:45
So in that case, the company has two choices.
190
525021
2127
这样这家公司就有了两个选择。
08:47
They could fire one of those software engineers
191
527148
2336
他们可以炒掉一位软件工程师,
08:49
because the other one can do the work of two people now,
192
529525
2670
因为另一位现在可以 一人干两个人的活,
08:52
or they already could afford two of them,
193
532195
3712
或者他们本来就请得起两位,
08:55
and now they're twice as efficient,
194
535948
1877
现在效率翻倍,
08:57
so they're bringing in more money.
195
537867
1627
于是能赚更多钱。
08:59
So why not keep both of them and take that extra profit?
196
539535
3671
为什么把两位都留着,多赚点钱呢?
09:03
The only way this math fails is if the AI is so expensive
197
543247
4338
唯一不成立的一点就是 如果 AI 太昂贵了,
09:07
that it's not worth it.
198
547585
1585
价值配不上成本。
09:09
But that would be like the AI is 100,000 dollars a year
199
549212
3670
但是这等同于 AI 每年花十万美元
09:12
to do one person's worth of work.
200
552882
2169
完成一人份的工作。
09:15
So that sounds really expensive.
201
555093
2293
听起来非常昂贵。
09:17
And practically,
202
557428
1377
实际上,
09:18
there are already open-source versions of these tools
203
558805
2836
这些工具有很多开源版本,
09:21
that are low-cost, that companies can install and run themselves.
204
561682
3295
价格低廉,企业可以 自行安装、运行。
09:25
Now they don’t perform as well as the flagship models,
205
565019
2878
虽然它们的性能不如旗舰模型,
09:27
but if they're half as good and really cheap,
206
567939
3044
但如果它们能达到一半的效果, 而且相当廉价,
09:30
wouldn't you take those over the one that costs 100,000 dollars a year
207
570983
3337
你难道会不选它们, 而去选每年花掉十万美元
09:34
to do one person's work?
208
574320
1168
完成一人份工作的 AI 吗?
09:35
Of course you would.
209
575530
1167
你当然会选它们。
09:36
And so even if we solve reliability, we solve the data problem,
210
576697
3003
即使我们解决了 可靠性问题、数据问题,
09:39
we make the models better,
211
579700
1585
我们提升了模型性能,
09:41
the fact that there are cheap versions of this available
212
581285
3212
有可用的廉价版本这一事实
09:44
suggests that companies aren't going to be spending
213
584497
2419
表明了企业并不会花费
09:46
hundreds of millions of dollars to replace their workforce with AI.
214
586916
3712
上亿美元用 AI 取代人力。
09:50
There are areas that we need to worry, though.
215
590670
2169
但还是有我们需要担心的领域。
09:52
Because if we look at AI now,
216
592839
1835
因为现在看看 AI,
09:54
there are lots of problems that we haven't been able to solve.
217
594715
3045
还是有很多无法解决的问题。
09:58
I've been building artificial intelligence for over 20 years,
218
598094
3086
我已经从事人工智能建设超过 20 年,
10:01
and one thing we know
219
601222
1710
我们知道有一点,
10:02
is that if we train AI on human data,
220
602974
2919
那就是如果我们用人类数据训练 AI,
10:05
the AI adopts human biases,
221
605935
2711
那么 AI 就会沿袭人类的偏见,
10:08
and we have not been able to fix that.
222
608688
2586
而我们对此束手无策。
10:11
We've seen those biases start showing up in generative AI,
223
611274
3545
我们已经在生成式 AI 中 开始看见这些偏见,
10:14
and the gut reaction is always, well,
224
614861
2085
我们的直觉反应一直都是
10:16
let's just put in some guardrails to stop the AI from doing the biased thing.
225
616988
4337
那就加上一些防护措施, 阻止 AI 做出一些带有偏见的事。
10:21
But one, that never fixes the bias because the AI finds a way around it.
226
621325
3587
但是其一,这无法消除偏见, 因为 AI 会见招拆招。
10:24
And two, the guardrails themselves can cause problems.
227
624954
3253
其二,防护措施本身就会出问题。
10:28
So Google has an AI image generator,
228
628249
2628
谷歌有一款 AI 图片生成器,
10:30
and they tried to put guardrails in place to stop the bias in the results.
229
630877
4087
他们试图加上防护措施, 避免输出中出现偏见。
10:35
And it turned out it made it wrong.
230
635006
2210
结果发现做错了。
10:37
This is a request for a picture
231
637258
1627
有人要求生成一张 签署《独立宣言》的图片。
10:38
of the signing of the Declaration of Independence.
232
638926
2336
10:41
And it's a great picture, but it is not factually correct.
233
641304
3879
图片不错,但是与事实不符。
10:45
And so in trying to stop the bias,
234
645183
2460
为了试图阻止偏见,
10:47
we end up creating more reliability problems.
235
647685
4254
结果创造了更多可靠性问题。
10:51
We haven't been able to solve this problem of bias.
236
651981
3670
我们还无法解决这种偏见问题。
10:55
And if we're thinking about deferring decision making,
237
655693
2794
如果我们在考虑延迟决策、
10:58
replacing human decision makers and relying on this technology
238
658529
3712
取代人类决策者、 依靠这项技术,
11:02
and we can't solve this problem,
239
662283
1793
还是解决不了这个问题,
11:04
that's a thing that we should worry about
240
664076
2044
那么这就是值得担心的一件事,
11:06
and demand solutions to
241
666120
1293
需要解决方法,
11:07
before it's just widely adopted and employed because it's sexy.
242
667455
3503
必须赶在它们因看似酷炫 而被广泛使用之前。
11:11
And I think there's one final thing that's missing here,
243
671459
3003
我觉得还有一点没讲到,
11:14
which is our human intelligence
244
674503
1627
那就是我们的人类智慧
11:16
is not defined by our productivity at work.
245
676172
3378
并不由我们的工作效率定义。
11:20
At its core, it's defined by our ability to connect with other people.
246
680092
4171
核心上,它是由我们 与他人的联结能力定义的。
11:24
Our ability to have emotional responses,
247
684263
2670
我们产生情绪反应的能力,
11:26
to take our past and integrate it with new information
248
686974
2878
将我们的过往与新信息结合,
11:29
and creatively come up with new things.
249
689894
2294
有创意地想到新点子。
11:32
And that’s something that artificial intelligence is not now
250
692188
2919
这是人工智能无论现在,
11:35
nor will it ever be capable of doing.
251
695107
2461
还是未来都无法做到的事。
11:37
It may be able to imitate it
252
697610
1501
它也许可以模仿,
11:39
and give us a cheap facsimile of genuine connection
253
699153
3087
拙劣地模仿真情实感的联结、
11:42
and empathy and creativity.
254
702281
2127
同理心和创造力。
11:44
But it can't do those core things to our humanity.
255
704408
3671
但是它无法做到人类的核心。
11:48
And that's why I'm not really worried about AGI taking over civilization.
256
708120
5047
这就是为什么我不是很担心 AGI 取代人类文明。
11:53
But if you come away from this disbelieving everything I have told you,
257
713209
4504
但是如果你结束时不相信我刚说的,
11:57
and right now you're worried
258
717755
1460
你现在在担心
11:59
about humanity being destroyed by AI overlords,
259
719257
3003
人类会被 AI 魔王毁灭,
12:02
the one thing to remember is,
260
722301
1877
那么请记住一点,
12:04
despite what the movies have told you,
261
724220
2085
无论电影告诉你什么,
12:06
if it gets really bad,
262
726347
1460
如果真的回天乏术,
12:07
we still can always just turn it off.
263
727807
2919
我们总还是可以关机的。
12:10
(Laughter)
264
730768
1001
(笑声)
12:11
Thank you.
265
731769
1168
谢谢。
12:12
(Applause)
266
732979
3837
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog