Jeff Dean: AI isn't as smart as you think -- but it could be | TED

253,683 views ・ 2022-01-12

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jennifer Huang 校对人员: Lexi Ding
00:13
Hi, I'm Jeff.
0
13329
1583
大家好,我是杰夫。
00:15
I lead AI Research and Health at Google.
1
15746
2833
我领导着谷歌的 人工智能研究与健康部门。
00:18
I joined Google more than 20 years ago,
2
18621
1875
我在二十多年前加入谷歌,
00:20
when we were all wedged into a tiny office space,
3
20538
3166
那时候我们还挤在 一间狭小的办公室里,
00:23
above what's now a T-Mobile store in downtown Palo Alto.
4
23704
2750
就位于现在帕罗阿托市中心的 一家德国电信商店上面。
00:27
I've seen a lot of computing transformations in that time,
5
27163
2875
在那段时间,我见证了 许多计算机技术的发展,
00:30
and in the last decade, we've seen AI be able to do tremendous things.
6
30079
3459
在过去十年,我们见证了 人工智能完成许多了不起的事情。
00:34
But we're still doing it all wrong in many ways.
7
34746
2542
但我们仍在许多方面都没有做对。
00:37
That's what I want to talk to you about today.
8
37329
2209
这是我今天想讨论的主题。
00:39
But first, let's talk about what AI can do.
9
39579
2209
不过首先,我们先来聊聊 人工智能可以做什么。
00:41
So in the last decade, we've seen tremendous progress
10
41829
3292
在过去的十年间, 我们看到了人工智能
00:45
in how AI can help computers see, understand language,
11
45121
4333
在帮助计算机识别物体、 理解语言和谈话方面
00:49
understand speech better than ever before.
12
49496
2833
取得的巨大进步。
00:52
Things that we couldn't do before, now we can do.
13
52329
2583
以往的天方夜谭 现在一一成为现实。
00:54
If you think about computer vision alone,
14
54954
2333
就单单拿计算机视觉来说,
00:57
just in the last 10 years,
15
57329
1583
在过去的十年中,
00:58
computers have effectively developed the ability to see;
16
58912
2792
电脑快速地发展出了‘看’的能力;
01:01
10 years ago, they couldn't see, now they can see.
17
61746
2500
十年前,它们看不到, 但现在可以了。
01:04
You can imagine this has had a transformative effect
18
64287
2500
这在计算机运用上
01:06
on what we can do with computers.
19
66787
2209
具有变革性的影响。
让我们来看几个由这些功能促成的
01:08
So let's look at a couple of the great applications
20
68996
2500
了不起的实际应用。
01:11
enabled by these capabilities.
21
71496
2000
我们可以通过机器学习 更准确地预测洪水,
01:13
We can better predict flooding, keep everyone safe,
22
73537
2417
保证所有人的安全。
01:15
using machine learning.
23
75996
1500
我们可以翻译一百多种语言 以便更顺畅地交流,
01:17
We can translate over 100 languages so we all can communicate better,
24
77538
3250
还可以更精准地预测和诊断疾病,
01:20
and better predict and diagnose disease,
25
80788
2000
01:22
where everyone gets the treatment that they need.
26
82788
2333
让所有人得到所需的治疗。
01:25
So let's look at two key components
27
85163
1916
让我们来看看
01:27
that underlie the progress in AI systems today.
28
87121
2333
构成当代人工智能系统 基础的两个关键元素。
01:30
The first is neural networks,
29
90121
1542
首先是神经网络,
01:31
a breakthrough approach to solving some of these difficult problems
30
91704
3417
它是解决这些难题的一项重大突破,
01:35
that has really shone in the last 15 years.
31
95121
2833
它在过去的十五年已经大放异彩。
01:37
But they're not a new idea.
32
97954
1625
但它并不是一个新的点子。
01:39
And the second is computational power.
33
99621
1833
第二个是运算能力。
01:41
It actually takes a lot of computational power
34
101454
2167
驱动神经网络运作
01:43
to make neural networks able to really sing,
35
103663
2083
实际需要大量的运算能力,
01:45
and in the last 15 years, we’ve been able to halve that,
36
105746
3375
在过去的十五年, 我们做到了使其减半,
01:49
and that's partly what's enabled all this progress.
37
109121
2458
那也是整个人工智能 得以发展至此的原因之一。
01:51
But at the same time, I think we're doing several things wrong,
38
111954
3459
但同时,我认为我们做错了几件事,
01:55
and that's what I want to talk to you about
39
115413
2000
那也是我想在这次演讲的最后
01:57
at the end of the talk.
40
117454
1167
和大家谈论的。
01:58
First, a bit of a history lesson.
41
118663
1958
首先,给大家上点历史课。
02:00
So for decades,
42
120663
1208
数十年间,
02:01
almost since the very beginning of computing,
43
121913
2125
几乎从计算机科学最早出现,
02:04
people have wanted to be able to build computers
44
124079
2250
人们就想建造
02:06
that could see, understand language, understand speech.
45
126329
3917
可以识别语言及理解谈话的电脑。
02:10
The earliest approaches to this, generally,
46
130579
2000
最初的方法一般是
02:12
people were trying to hand-code all the algorithms
47
132621
2333
人们手动写下
02:14
that you need to accomplish those difficult tasks,
48
134996
2458
完成难题所需的算法。
02:17
and it just turned out to not work very well.
49
137454
2375
但成效一般。
02:19
But in the last 15 years, a single approach
50
139829
3250
但在过去的十五年间,
一个方法出其不意地 一次性解决了所有难题:
02:23
unexpectedly advanced all these different problem spaces all at once:
51
143079
4167
02:27
neural networks.
52
147954
1542
神经网络。
02:29
So neural networks are not a new idea.
53
149538
1833
神经网络并非一个新想法。
02:31
They're kind of loosely based
54
151371
1417
它们大致上基于
02:32
on some of the properties that are in real neural systems.
55
152788
3041
一些真实神经系统的特性。
02:35
And many of the ideas behind neural networks
56
155829
2084
大部分神经网络背后的理念
02:37
have been around since the 1960s and 70s.
57
157954
2250
出现于1960和70年代。
02:40
A neural network is what it sounds like,
58
160204
2167
神经网络如同其字面意思一样,
02:42
a series of interconnected artificial neurons
59
162413
2708
是一连串互相连接的神经元。
02:45
that loosely emulate the properties of your real neurons.
60
165121
3000
它们大致上效仿了 人体真正神经元的特性。
02:48
An individual neuron in one of these systems
61
168163
2166
这种系统中的一个独立神经元,
02:50
has a set of inputs,
62
170371
1417
拥有一组输入信息,
02:51
each with an associated weight,
63
171788
2041
每组输入信息有对应的比重,
02:53
and the output of a neuron
64
173871
1833
神经元的信息输出
02:55
is a function of those inputs multiplied by those weights.
65
175704
3209
就等于那些输入信息 乘以它们对应的比重。
02:59
So pretty simple,
66
179288
1208
所以其实挺简单的,
03:00
and lots and lots of these work together to learn complicated things.
67
180538
3666
无数神经元协同运作 就可以学习复杂的东西。
03:04
So how do we actually learn in a neural network?
68
184496
2833
所以我们到底是 如何在神经网络中学习的?
03:07
It turns out the learning process
69
187371
1708
其实,在学习过程中,
03:09
consists of repeatedly making tiny little adjustments
70
189079
2792
比重在不断被微调,
03:11
to the weight values,
71
191913
1208
03:13
strengthening the influence of some things,
72
193121
2042
增强一些东西的影响,
03:15
weakening the influence of others.
73
195204
1959
削弱其他的影响。
03:17
By driving the overall system towards desired behaviors,
74
197204
3917
在驱使整个系统去往 理想运作模式的过程中,
03:21
these systems can be trained to do really complicated things,
75
201163
2916
可以训练其完成 一些非常复杂的事情,
03:24
like translate from one language to another,
76
204121
2875
例如翻译语言,
03:27
detect what kind of objects are in a photo,
77
207038
3083
识别照片中的物体,
03:30
all kinds of complicated things.
78
210121
1875
任何类型的复杂工作。
03:32
I first got interested in neural networks
79
212038
2000
我对神经网络的兴趣,
03:34
when I took a class on them as an undergraduate in 1990.
80
214079
3042
始于1990年本科阶段时 学到的一门相关课程。
03:37
At that time,
81
217163
1125
那时,
03:38
neural networks showed impressive results on tiny problems,
82
218329
3792
神经网络在精细问题的解决上 取得了惊人的成果,
03:42
but they really couldn't scale to do real-world important tasks.
83
222121
4375
但还达不到完成真实世界中 重要工作的程度。
03:46
But I was super excited.
84
226538
1500
但我非常兴奋。
03:48
(Laughter)
85
228079
2500
(笑声)
03:50
I felt maybe we just needed more compute power.
86
230579
2417
我觉得我们可能只是 需要更强的运算能力。
03:52
And the University of Minnesota had a 32-processor machine.
87
232996
3625
明尼苏达大学当时 有一个32位处理器。
03:56
I thought, "With more compute power,
88
236621
1792
我想:“如果有更强的运算能力, 我们真能用神经网络干点大事。”
03:58
boy, we could really make neural networks really sing."
89
238413
3000
04:01
So I decided to do a senior thesis on parallel training of neural networks,
90
241454
3584
所以我决定以神经网络的并行训练 作为我毕业论文的课题,
04:05
the idea of using processors in a computer or in a computer system
91
245079
4000
理念是将电脑或电脑系统中 所有的处理器
04:09
to all work toward the same task,
92
249079
2125
运用到同一件任务上,
04:11
that of training neural networks.
93
251204
1584
用来训练神经网络。
04:12
32 processors, wow,
94
252829
1292
32位处理器,哇,
04:14
we’ve got to be able to do great things with this.
95
254163
2833
我们肯定能用它做点大事。
04:17
But I was wrong.
96
257496
1167
但我错了。
04:20
Turns out we needed about a million times as much computational power
97
260038
3333
我发现如果想用神经网络 做些引人注目的事情,
04:23
as we had in 1990
98
263371
1375
04:24
before we could actually get neural networks to do impressive things.
99
264788
3333
我们所需的算力大概是 90年代算力的一百万倍。
04:28
But starting around 2005,
100
268121
2417
但从大概2005年开始,
04:30
thanks to the computing progress of Moore's law,
101
270579
2500
多亏了摩尔定律,
04:33
we actually started to have that much computing power,
102
273121
2625
我们真的开始拥有这么多运算能力了,
04:35
and researchers in a few universities around the world started to see success
103
275746
4250
世界上一些大学里的研究员们
开始成功用神经网络完成各种任务。
04:40
in using neural networks for a wide variety of different kinds of tasks.
104
280038
4083
04:44
I and a few others at Google heard about some of these successes,
105
284121
3583
我和其他几个在谷歌的同事 听闻了这些成功事例,
04:47
and we decided to start a project to train very large neural networks.
106
287746
3333
于是决定启动一个项目, 训练大型神经网络。
04:51
One system that we trained,
107
291079
1459
其中一个系统,
04:52
we trained with 10 million randomly selected frames
108
292538
3541
我们用油管视频里随机截取的 一千万帧照片对其进行训练。
04:56
from YouTube videos.
109
296079
1292
04:57
The system developed the capability
110
297371
1750
这个系统发展出了能够识别 所有不同种类物体的能力。
04:59
to recognize all kinds of different objects.
111
299121
2583
05:01
And it being YouTube, of course,
112
301746
1542
然后因为是油管的关系,
05:03
it developed the ability to recognize cats.
113
303329
2500
所以它发展出了识别猫的能力。
05:05
YouTube is full of cats.
114
305829
1292
油管上全是猫。
05:07
(Laughter)
115
307163
1416
(笑声)
05:08
But what made that so remarkable
116
308621
2208
但让它如此引人注目的是
05:10
is that the system was never told what a cat was.
117
310871
2417
从未有人告诉过这个系统 猫到底是什么。
05:13
So using just patterns in data,
118
313704
2500
仅仅依靠数据的形态规律,
05:16
the system honed in on the concept of a cat all on its own.
119
316204
3625
它就能自己琢磨出来猫究竟是什么。
05:20
All of this occurred at the beginning of a decade-long string of successes,
120
320371
3750
所有的这一切标志着 一个长达十年的,
05:24
of using neural networks for a huge variety of tasks,
121
324121
2500
在谷歌及其它地方成功运用神经网络 完成繁杂任务的开始。
05:26
at Google and elsewhere.
122
326663
1166
05:27
Many of the things you use every day,
123
327871
2167
这些你日常使用的东西,
05:30
things like better speech recognition for your phone,
124
330079
2500
例如手机更准确的语音识别系统,
05:32
improved understanding of queries and documents
125
332579
2209
提升对问题和文本的理解力,
05:34
for better search quality,
126
334829
1459
优化搜索结果,
05:36
better understanding of geographic information to improve maps,
127
336329
3042
对地理信息更完善的理解等等 提升地图及其他方面。
05:39
and so on.
128
339413
1166
05:40
Around that time,
129
340621
1167
在那个时候,
05:41
we also got excited about how we could build hardware that was better tailored
130
341788
3750
我们还对如何打造一个更适合 神经网络运算所需的计算机硬件感兴趣。
05:45
to the kinds of computations neural networks wanted to do.
131
345579
2792
神经网络运算有两个特性。
05:48
Neural network computations have two special properties.
132
348371
2667
05:51
The first is they're very tolerant of reduced precision.
133
351079
2625
第一个是它们对精准度要求很低。
05:53
Couple of significant digits, you don't need six or seven.
134
353746
2750
几个有效位就够了, 不需要六七个那么多。
05:56
And the second is that all the algorithms are generally composed
135
356496
3458
第二个是所有算法都普遍由多个 不同的矩阵和向量的运算组成。
05:59
of different sequences of matrix and vector operations.
136
359996
3458
06:03
So if you can build a computer
137
363496
1750
所以如果你可以造一台 擅长低精准度矩阵及向量运算
06:05
that is really good at low-precision matrix and vector operations
138
365246
3792
06:09
but can't do much else,
139
369079
1709
但除此之外没啥用的电脑,
06:10
that's going to be great for neural-network computation,
140
370829
2625
它会非常适用于神经网络运算,
虽然你无法用它做太多别的事。
06:13
even though you can't use it for a lot of other things.
141
373496
2667
如果你造出类似的东西, 人们会发现它的妙用。
06:16
And if you build such things, people will find amazing uses for them.
142
376163
3291
这是我们制作的 第一个成品,TPU v1。
06:19
This is the first one we built, TPU v1.
143
379496
2083
06:21
"TPU" stands for Tensor Processing Unit.
144
381621
2542
“TPU”是张量处理器的意思。
06:24
These have been used for many years behind every Google search,
145
384204
3042
多年来,这一技术运用于谷歌搜索,
06:27
for translation,
146
387246
1167
翻译,
06:28
in the DeepMind AlphaGo matches,
147
388454
1917
以及AlphaGo围棋比赛,
06:30
so Lee Sedol and Ke Jie maybe didn't realize,
148
390413
2583
所以李世石和柯洁可能没意识到,
06:33
but they were competing against racks of TPU cards.
149
393038
2708
他们其实是在和TPU架构比赛。
06:35
And we've built a bunch of subsequent versions of TPUs
150
395788
2583
后来我们制作了很多个 TPU的后续版本,
06:38
that are even better and more exciting.
151
398371
1875
他们更强大也更振奋人心。
06:40
But despite all these successes,
152
400288
2083
但即使我们取得了这些成功,
06:42
I think we're still doing many things wrong,
153
402371
2208
我觉得我们仍然做错了很多事,
接下来我将讲三件我们做错的事情,
06:44
and I'll tell you about three key things we're doing wrong,
154
404621
2792
以及如何修正他们。
06:47
and how we'll fix them.
155
407454
1167
第一个是,现如今的大部分神经网络
06:48
The first is that most neural networks today
156
408663
2083
06:50
are trained to do one thing, and one thing only.
157
410746
2250
只被训练进行单一种类的任务。
06:53
You train it for a particular task that you might care deeply about,
158
413038
3208
你训练它去做一件你很关心的事情,
06:56
but it's a pretty heavyweight activity.
159
416288
1916
但这是一项非常繁重的工作。
06:58
You need to curate a data set,
160
418246
1667
你需要搜索数据组,
06:59
you need to decide what network architecture you'll use
161
419913
3000
选择这个问题所需的网络架构,
07:02
for this problem,
162
422954
1167
07:04
you need to initialize the weights with random values,
163
424121
2708
接着随机分配起始比重,
07:06
apply lots of computation to make adjustments to the weights.
164
426871
2875
然后为调整比重进行大量运算。
07:09
And at the end, if you’re lucky, you end up with a model
165
429746
2750
到最后,如果你幸运的话,
07:12
that is really good at that task you care about.
166
432538
2291
可以得到一个非常适用于 你关心的问题的模型。
07:14
But if you do this over and over,
167
434871
1583
但如果你一直这样做,
07:16
you end up with thousands of separate models,
168
436496
2667
到最后会得到几千个独立的模型,
07:19
each perhaps very capable,
169
439204
1792
每个可能都很有用,
07:21
but separate for all the different tasks you care about.
170
441038
2791
但都只针对某个单一类型的问题。
07:23
But think about how people learn.
171
443829
1667
想一想人类是怎样学习的。
07:25
In the last year, many of us have picked up a bunch of new skills.
172
445538
3166
去年,我们中的很多人 都掌握了一些新的技能。
07:28
I've been honing my gardening skills,
173
448746
1792
我沉浸于钻研园艺,
07:30
experimenting with vertical hydroponic gardening.
174
450579
2375
尝试垂直水培园艺。
07:32
To do that, I didn't need to relearn everything I already knew about plants.
175
452954
3792
我无需为此重新学习一遍 我已经掌握的有关植物的知识。
07:36
I was able to know how to put a plant in a hole,
176
456746
3375
我知道怎么把植物放进洞里,
07:40
how to pour water, that plants need sun,
177
460163
2291
怎么浇水,以及植物需要光照,
07:42
and leverage that in learning this new skill.
178
462496
3583
我只需要整合这些知识 用以学习新的技术。
07:46
Computers can work the same way, but they don’t today.
179
466079
3042
电脑也可以这样运作, 但现如今它们并没有。
07:49
If you train a neural network from scratch,
180
469163
2583
如果你从头开始训练一个神经网络,
07:51
it's effectively like forgetting your entire education
181
471746
3542
每次学习新的东西
都像是让你忘掉 之前学习的所有知识。
07:55
every time you try to do something new.
182
475288
1875
07:57
That’s crazy, right?
183
477163
1000
这太疯狂了对吧!
07:58
So instead, I think we can and should be training
184
478788
3708
所以比起这样,我认为我们可以,
08:02
multitask models that can do thousands or millions of different tasks.
185
482538
3791
也应该去训练能完成成千上万种 不同任务的多任务处理模型。
08:06
Each part of that model would specialize in different kinds of things.
186
486329
3375
此模型的每个部分都有自己的专长。
08:09
And then, if we have a model that can do a thousand things,
187
489704
2792
然后,假设我们有一个 可以完成一千种任务的模型,
08:12
and the thousand and first thing comes along,
188
492538
2166
这时候第一千零一种任务来了,
08:14
we can leverage the expertise we already have
189
494746
2125
我们就可以整合系统中已有的 和这个新任务相关的知识,
08:16
in the related kinds of things
190
496913
1541
08:18
so that we can more quickly be able to do this new task,
191
498496
2792
从而更快速的完成这项新任务,
08:21
just like you, if you're confronted with some new problem,
192
501288
2791
就像你本人一样, 如果你面临了一些新问题,
08:24
you quickly identify the 17 things you already know
193
504121
2625
你会快速识别17件自己已知 并能够帮助解决这些新问题的知识。
08:26
that are going to be helpful in solving that problem.
194
506746
2542
08:29
Second problem is that most of our models today
195
509329
2709
第二个问题是,
大部分现今的模型 只能应对一种形态的数据,
08:32
deal with only a single modality of data --
196
512079
2125
08:34
with images, or text or speech,
197
514204
3084
图片,文字或语音,
08:37
but not all of these all at once.
198
517329
1709
但无法做到一网打尽。
08:39
But think about how you go about the world.
199
519079
2042
但想一想你如何在这世上生活。
08:41
You're continuously using all your senses
200
521121
2333
你不断地动用你所有的感官
08:43
to learn from, react to,
201
523454
3083
去学习,去做出反应,
08:46
figure out what actions you want to take in the world.
202
526579
2667
去搞清楚现在应该做什么。
08:49
Makes a lot more sense to do that,
203
529287
1667
这样显然更加合理,
08:50
and we can build models in the same way.
204
530954
2000
我们也可以用同样的方式建造模型。
08:52
We can build models that take in these different modalities of input data,
205
532954
4042
我们可以建造一个可以接收 所有不同种类数据的模型,
文字,图像,语音,
08:57
text, images, speech,
206
537037
1750
08:58
but then fuse them together,
207
538829
1417
然后把它们融合在一起,
09:00
so that regardless of whether the model sees the word "leopard,"
208
540329
3833
这样无论这个模型看到文字“豹子”,
09:04
sees a video of a leopard or hears someone say the word "leopard,"
209
544204
4083
看到豹子的视频,还是 听到有人说出“豹子”这个词
09:08
the same response is triggered inside the model:
210
548329
2250
它都会触发同样的反应:
09:10
the concept of a leopard
211
550621
1750
一个豹子的概念
09:12
can deal with different kinds of input data,
212
552412
2250
可以应对很多种不同的数据输入项,
09:14
even nonhuman inputs, like genetic sequences,
213
554662
3000
甚至是非人工的输入项, 例如基因序列,
09:17
3D clouds of points, as well as images, text and video.
214
557662
3209
3D点云数据,当然也包括 图片,文字和影像。
09:20
The third problem is that today's models are dense.
215
560912
3625
第三个问题是现今的模型是稠密的。
09:24
There's a single model,
216
564579
1417
拿一个模型来举例,
09:25
the model is fully activated for every task,
217
565996
2375
进行任何一项任务时 这个模型都需要被完全激活,
09:28
for every example that we want to accomplish,
218
568412
2125
任何一个我们想要完成的事情,
09:30
whether that's a really simple or a really complicated thing.
219
570537
2917
无论困难与否。
09:33
This, too, is unlike how our own brains work.
220
573496
2666
这再一次有悖人脑运作的习惯。
09:36
Different parts of our brains are good at different things,
221
576204
3000
大脑不同的区块擅长不同的工作,
09:39
and we're continuously calling upon the pieces of them
222
579246
3291
我们会不断的运用 与需要完成的任务相关的区块。
09:42
that are relevant for the task at hand.
223
582579
2167
09:44
For example, nervously watching a garbage truck
224
584787
2334
比如,紧张地看着一辆垃圾车 朝自家车的方向倒车,
09:47
back up towards your car,
225
587162
1875
09:49
the part of your brain that thinks about Shakespearean sonnets
226
589037
2917
你大脑中负责思考莎士比亚的 十四行诗的区块应该不会被激活。
09:51
is probably inactive.
227
591996
1250
09:53
(Laughter)
228
593246
1625
(笑声)
09:54
AI models can work the same way.
229
594912
1750
人工智能模型也可以这样运作。
09:56
Instead of a dense model,
230
596662
1292
比起稠密模型,
09:57
we can have one that is sparsely activated.
231
597954
2250
我们可以制造一个 激活反应较稀松的模型。
10:00
So for particular different tasks, we call upon different parts of the model.
232
600204
4250
在做不同任务的时候, 我们运用模型中不同的区块。
10:04
During training, the model can also learn which parts are good at which things,
233
604496
4375
在训练时,模型也可以学习 哪个区块擅长哪个领域,
10:08
to continuously identify what parts it wants to call upon
234
608871
3791
从而不断地识别需要运用 哪些区块来完成新的任务。
10:12
in order to accomplish a new task.
235
612662
1834
10:14
The advantage of this is we can have a very high-capacity model,
236
614496
3541
此类模型的优势在于 虽然容量大但十分高效,
10:18
but it's very efficient,
237
618037
1250
10:19
because we're only calling upon the parts that we need
238
619329
2583
因为我们只会用到 完成某项任务所需的区块。
10:21
for any given task.
239
621954
1208
10:23
So fixing these three things, I think,
240
623162
2000
因此我认为,解决了这三个问题,
10:25
will lead to a more powerful AI system:
241
625162
2209
人工智能的能力将更上一层楼:
10:27
instead of thousands of separate models,
242
627412
2000
比起几千个独立的模型, [独立模型/通用模型]
10:29
train a handful of general-purpose models
243
629412
2000
训练几个能够应对 成千上万件事情的通用模型。
10:31
that can do thousands or millions of things.
244
631454
2083
10:33
Instead of dealing with single modalities,
245
633579
2042
比起接收单一的数据形态,
10:35
deal with all modalities,
246
635662
1334
让它处理所有的数据形态 并把它们整合到一起。
10:36
and be able to fuse them together.
247
636996
1708
10:38
And instead of dense models, use sparse, high-capacity models,
248
638746
3458
比起稠密模型, 运用稀松且高容量的模型,
10:42
where we call upon the relevant bits as we need them.
249
642246
2958
让我们能按需激活指定区块。
10:45
We've been building a system that enables these kinds of approaches,
250
645246
3416
我们已经在制造 符合以上条件的模型了,
10:48
and we’ve been calling the system “Pathways.”
251
648704
2542
我们给它取了个名字 叫“Pathways”。
10:51
So the idea is this model will be able to do
252
651287
3084
我们的理念是
10:54
thousands or millions of different tasks,
253
654412
2084
这个模型可以完成 成千上万种不同类型的任务,
10:56
and then, we can incrementally add new tasks,
254
656537
2250
然后我们可以逐步增加新的任务,
10:58
and it can deal with all modalities at once,
255
658787
2125
它也可以同时处理各种形态的数据,
11:00
and then incrementally learn new tasks as needed
256
660954
2958
然后逐步学习新技能,
11:03
and call upon the relevant bits of the model
257
663954
2083
并按需为不同任务启动不同区块。
11:06
for different examples or tasks.
258
666037
1709
11:07
And we're pretty excited about this,
259
667787
1750
我们对此感到非常兴奋,
11:09
we think this is going to be a step forward
260
669537
2042
我们认为这将是人工智能 系统建造迈出的重要一步。
11:11
in how we build AI systems.
261
671621
1333
11:12
But I also wanted to touch on responsible AI.
262
672954
3708
不过我也想浅谈一下 什么是可靠的人工智能。
11:16
We clearly need to make sure that this vision of powerful AI systems
263
676662
4875
我们一定要确保这样强大的 人工智能系统造福所有人。
11:21
benefits everyone.
264
681579
1167
11:23
These kinds of models raise important new questions
265
683496
2458
此类模型将一些重要的 新问题带进大众的视野,
11:25
about how do we build them with fairness,
266
685954
2458
我们应该如何确保系统于所有人而言
11:28
interpretability, privacy and security,
267
688454
3208
都具有公平性、可解释性、 私密性以及安全性。
11:31
for all users in mind.
268
691662
1459
11:33
For example, if we're going to train these models
269
693621
2291
例如,如果我们要训练 这些模型完成成千上万种任务,
11:35
on thousands or millions of tasks,
270
695954
2125
11:38
we'll need to be able to train them on large amounts of data.
271
698079
2875
我们需要极大量的数据。
11:40
And we need to make sure that data is thoughtfully collected
272
700996
3250
我们一定要确保 这些数据的采集经过深思熟虑,
11:44
and is representative of different communities and situations
273
704287
3667
它们需要代表世界上 不同的社群和情况。
11:47
all around the world.
274
707954
1167
11:49
And data concerns are only one aspect of responsible AI.
275
709579
4000
数据上的担忧仅仅是 可靠的人工智能这个议题的一部分。
11:53
We have a lot of work to do here.
276
713621
1583
我们要做的还有很多。
11:55
So in 2018, Google published this set of AI principles
277
715246
2666
2018年,谷歌发表了在开发 此类科技时应注意的人工智能守则。
11:57
by which we think about developing these kinds of technology.
278
717912
3500
12:01
And these have helped guide us in how we do research in this space,
279
721454
3625
这帮助指导了我们 如何在这个领域从事研究,
12:05
how we use AI in our products.
280
725121
1833
以及如何在产品中使用人工智能。
12:06
And I think it's a really helpful and important framing
281
726996
2750
我认为这对思考复杂且有深度的问题,
12:09
for how to think about these deep and complex questions
282
729746
2875
及在社会中运用人工智能 都有帮助且很重要。
12:12
about how we should be using AI in society.
283
732621
2833
12:15
We continue to update these as we learn more.
284
735454
3625
我们在学习过程中不断更新该守则,
12:19
Many of these kinds of principles are active areas of research --
285
739079
3458
很多此类准则都是 现在的热点研究领域,
12:22
super important area.
286
742537
1542
它们非常重要。
12:24
Moving from single-purpose systems that kind of recognize patterns in data
287
744121
4125
由只能识别数据中的 图案规律的单一用途系统,
12:28
to these kinds of general-purpose intelligent systems
288
748246
2750
到对世界有更深理解的 通用智能系统的转变,
12:31
that have a deeper understanding of the world
289
751037
2292
12:33
will really enable us to tackle
290
753329
1583
真的可以赋予我们能力 去解决人类面临的重大问题。
12:34
some of the greatest problems humanity faces.
291
754954
2500
12:37
For example,
292
757454
1167
比如,
12:38
we’ll be able to diagnose more disease;
293
758662
2375
我们可以诊断更多疾病,
12:41
we'll be able to engineer better medicines
294
761079
2000
我们可以通过给这些模型灌输化学 和物理知识从而设计出更好的药品,
12:43
by infusing these models with knowledge of chemistry and physics;
295
763079
3083
12:46
we'll be able to advance educational systems
296
766204
2667
我们可以通过个性化定制的补习服务 来优化现有的教育系统,
12:48
by providing more individualized tutoring
297
768871
2041
12:50
to help people learn in new and better ways;
298
770912
2375
让人们用更先进的方法来学习,
12:53
we’ll be able to tackle really complicated issues,
299
773287
2375
我们可以解决十分复杂的难题,
12:55
like climate change,
300
775704
1208
例如全球变暖,
12:56
and perhaps engineering of clean energy solutions.
301
776954
2792
或是帮助清洁能源的发展。
12:59
So really, all of these kinds of systems
302
779787
2667
所以其实,所有此类系统
13:02
are going to be requiring the multidisciplinary expertise
303
782496
2875
都需要世界各地的 多学科专家共同协作。
13:05
of people all over the world.
304
785371
1875
13:07
So connecting AI with whatever field you are in,
305
787287
3542
将人工智能和你所在的领域相结合,
13:10
in order to make progress.
306
790829
1750
从而推动产业的进程。
13:13
So I've seen a lot of advances in computing,
307
793579
2292
我看到了许多计算机科学的优势,
13:15
and how computing, over the past decades,
308
795912
2292
以及在过去的几十年中计算机科学 如何帮助几百万人更好地理解世界。
13:18
has really helped millions of people better understand the world around them.
309
798204
4167
13:22
And AI today has the potential to help billions of people.
310
802412
3000
今天的人工智能拥有 帮助数十亿人的潜力。
13:26
We truly live in exciting times.
311
806204
2125
我们真的生活在 一个振奋人心的时代。
13:28
Thank you.
312
808746
1166
谢谢。
13:29
(Applause)
313
809912
7000
(掌声)
13:39
Chris Anderson: Thank you so much.
314
819829
1667
克里斯·安德森:非常感谢。
13:41
I want to follow up on a couple things.
315
821537
2375
我还有几个问题。
13:44
This is what I heard.
316
824454
2792
据我所知,
13:47
Most people's traditional picture of AI
317
827287
4125
大部分人对于人工智能的印象
13:51
is that computers recognize a pattern of information,
318
831412
3125
是电脑识别出信息的模式,
13:54
and with a bit of machine learning,
319
834579
2125
运用一些机器学习的技术,
13:56
they can get really good at that, better than humans.
320
836704
2625
就可以比人类更擅长某项工作。
13:59
What you're saying is those patterns
321
839329
1792
你所说的模式已经不再是 人工智能所处理的原子层面了,
14:01
are no longer the atoms that AI is working with,
322
841121
2875
14:04
that it's much richer-layered concepts
323
844037
2542
而是一种层次更加丰富的概念 比如组成一只美洲豹的,
14:06
that can include all manners of types of things
324
846621
3458
14:10
that go to make up a leopard, for example.
325
850121
3000
各种形式的各种信息。
14:13
So what could that lead to?
326
853121
2916
那这会产生什么样的结果呢?
14:16
Give me an example of when that AI is working,
327
856079
2750
请举个例子,当人们使用人工智能
14:18
what do you picture happening in the world
328
858829
2042
你预想接下来五到十年中 世界上会发生什么有趣的事情?
14:20
in the next five or 10 years that excites you?
329
860912
2209
14:23
Jeff Dean: I think the grand challenge in AI
330
863537
2500
杰夫·迪恩:我认为人工智能 面临的最大的挑战是
14:26
is how do you generalize from a set of tasks
331
866079
2375
如何尽可能简单且高效地
14:28
you already know how to do
332
868496
1416
14:29
to new tasks,
333
869954
1208
运用已知的知识来完成新任务。
14:31
as easily and effortlessly as possible.
334
871204
2542
14:33
And the current approach of training separate models for everything
335
873746
3250
现在我们训练一个通用模型的方法
14:36
means you need lots of data about that particular problem,
336
876996
3166
需要大量的与该问题 相关的数据支持,
14:40
because you're effectively trying to learn everything
337
880162
2542
因为我们在试图从零开始高效地学习 世界上包括那个问题在内的所有知识。
14:42
about the world and that problem, from nothing.
338
882746
2541
14:45
But if you can build these systems
339
885287
1667
不过如果你可以建造出一个
14:46
that already are infused with how to do thousands and millions of tasks,
340
886996
4458
能完成成千上万种任务的系统,
14:51
then you can effectively teach them to do a new thing
341
891496
3791
你就只需要用较少的数据 去教会它一个新的东西。
14:55
with relatively few examples.
342
895329
1500
14:56
So I think that's the real hope,
343
896871
2083
我认为这是一个希望,
14:58
that you could then have a system where you just give it five examples
344
898996
4083
只需给这个系统五个 和你想完成的任务相关的事例,
15:03
of something you care about,
345
903121
1541
15:04
and it learns to do that new task.
346
904704
1917
它就能学会这个新技能。
15:06
CA: You can do a form of self-supervised learning
347
906662
2375
克里斯:你只需要一点点‘肥料’ 就能打造一个自我监督学习系统。
15:09
that is based on remarkably little seeding.
348
909079
2542
15:11
JD: Yeah, as opposed to needing 10,000 or 100,000 examples
349
911662
2875
杰夫:是的,比起用一万或者十万个 事例来搞明白世界上所有的事情。
15:14
to figure everything in the world out.
350
914579
1833
15:16
CA: Aren't there kind of terrifying unintended consequences
351
916454
2792
克里斯:它可能带来什么 非常恐怖的后果吗?
15:19
possible, from that?
352
919287
1334
15:20
JD: I think it depends on how you apply these systems.
353
920621
2625
杰夫:我认为这取决于 你如何使用此类系统。
15:23
It's very clear that AI can be a powerful system for good,
354
923287
4167
显然人工智能可以是 普惠大众的一大利器,
15:27
or if you apply it in ways that are not so great,
355
927496
2333
也可能因为不当的使用 而产生负面影响。
15:29
it can be a negative consequence.
356
929871
3375
15:33
So I think that's why it's important to have a set of principles
357
933287
3042
所以我认为这体现出了 行为准则的重要性,
15:36
by which you look at potential uses of AI
358
936371
2250
在你放眼人工智能的无限可能时,
15:38
and really are careful and thoughtful about how you consider applications.
359
938662
5125
谨慎且缜密地思考它的用途。
15:43
CA: One of the things people worry most about
360
943787
2209
克里斯:其中一个人们最担心的点是
15:45
is that, if AI is so good at learning from the world as it is,
361
945996
3583
如果人工智能如此擅长学习,
15:49
it's going to carry forward into the future
362
949621
2875
它可能对未来世界的格局产生影响,
15:52
aspects of the world as it is that actually aren't right, right now.
363
952537
4375
但这在现在看来还不太能被接受。
15:56
And there's obviously been a huge controversy about that
364
956954
2708
显然最近针对谷歌也有 一个非常大的争议。
15:59
recently at Google.
365
959662
2417
16:02
Some of those principles of AI development,
366
962121
3083
一些之前提到的人工智能开发准则
16:05
you've been challenged that you're not actually holding to them.
367
965246
4708
被质疑并未被遵守。
16:10
Not really interested to hear about comments on a specific case,
368
970329
3250
倒不用说一些具体事例,
16:13
but ... are you really committed?
369
973621
2708
不过……你们真的有遵守吗?
16:16
How do we know that you are committed to these principles?
370
976329
2750
我们如何知道谷歌 是否遵守这些条规?
16:19
Is that just PR, or is that real, at the heart of your day-to-day?
371
979079
4417
它只是一个公关行为, 还是它真的时刻存于你们心中。
16:23
JD: No, that is absolutely real.
372
983496
1541
杰夫:毋庸置疑是真的。
16:25
Like, we have literally hundreds of people
373
985079
2125
我们差不多有几百人
16:27
working on many of these related research issues,
374
987204
2333
在研究与此相关的议题,
16:29
because many of those things are research topics
375
989537
2417
因为很多这种准则 本身就是研究议题。
16:31
in their own right.
376
991996
1166
16:33
How do you take data from the real world,
377
993162
2250
你如何在现实世界中提取数据,
16:35
that is the world as it is, not as we would like it to be,
378
995412
5000
我们需要还原世界本来的样子, 而非我们想让它变成的样子,
16:40
and how do you then use that to train a machine-learning model
379
1000412
3209
接着是如何用这些数据 训练一个机器学习模型,
16:43
and adapt the data bit of the scene
380
1003621
2500
调整或在原有基础上增加一些数据,
16:46
or augment the data with additional data
381
1006162
2500
16:48
so that it can better reflect the values we want the system to have,
382
1008704
3292
从而使系统反映出我们想要的价值,
16:51
not the values that it sees in the world?
383
1011996
2208
而非那些它在世界中观察到的。
16:54
CA: But you work for Google,
384
1014204
2417
克里斯:但你在谷歌工作,
16:56
Google is funding the research.
385
1016662
2084
谷歌在为这些研究提供资金。
16:59
How do we know that the main values that this AI will build
386
1019371
4458
我们怎么知道开发这些人工智能 最大的价值在于全人类的福祉,
17:03
are for the world,
387
1023871
1208
17:05
and not, for example, to maximize the profitability of an ad model?
388
1025121
4916
而不是,比如说使一个 广告模型利益最大化?
17:10
When you know everything there is to know about human attention,
389
1030037
3084
当你知道了有关 人类关注点的所有信息,
17:13
you're going to know so much
390
1033121
1500
你对于我们内心的扭曲 和阴暗就了解的太多了。
17:14
about the little wriggly, weird, dark parts of us.
391
1034621
2458
17:17
In your group, are there rules about how you hold off,
392
1037121
6167
在你的团队中,有没有阻止 不当行为的规则,
在商业压力前,有没有 竖起一面政教之墙,
17:23
church-state wall between a sort of commercial push,
393
1043329
3750
17:27
"You must do it for this purpose,"
394
1047079
2292
要求“你必须这样做,”
17:29
so that you can inspire your engineers and so forth,
395
1049413
2458
从而激励你的工程师们之类的,
17:31
to do this for the world, for all of us.
396
1051913
1916
为世界,为我们考虑。
17:33
JD: Yeah, our research group does collaborate
397
1053871
2125
杰夫:是的,我们的研究团队 会和谷歌的其它一些团队合作,
17:36
with a number of groups across Google,
398
1056038
1833
包括广告部门, 搜索部门,地图部门,
17:37
including the Ads group, the Search group, the Maps group,
399
1057913
2750
我们有这样的合作, 但也有许多纯粹的公开发表的文献。
17:40
so we do have some collaboration, but also a lot of basic research
400
1060704
3209
17:43
that we publish openly.
401
1063954
1542
我们去年发表了一千多份论文,
17:45
We've published more than 1,000 papers last year
402
1065538
3333
涉及各种领域,也包含了 许多你之前提到的议题,
17:48
in different topics, including the ones you discussed,
403
1068871
2583
例如公平性, 机器学习模型的可解释性,
17:51
about fairness, interpretability of the machine-learning models,
404
1071454
3042
那些很重要的东西,
17:54
things that are super important,
405
1074538
1791
17:56
and we need to advance the state of the art in this
406
1076371
2417
且我们需要优化它的最高标准,
17:58
in order to continue to make progress
407
1078829
2209
从而继续确保这些模型 在安全且可靠的情况下被开发。
18:01
to make sure these models are developed safely and responsibly.
408
1081079
3292
18:04
CA: It feels like we're at a time when people are concerned
409
1084788
3041
克里斯:我感觉我们处在一个人们 十分忌惮大型科技公司能力的时代,
18:07
about the power of the big tech companies,
410
1087829
2042
18:09
and it's almost, if there was ever a moment to really show the world
411
1089871
3750
如果能有机会真正向世界展示
18:13
that this is being done to make a better future,
412
1093663
3333
这是为了建造更好的未来,
18:17
that is actually key to Google's future,
413
1097038
2791
这是谷歌未来的关键,
18:19
as well as all of ours.
414
1099871
1750
也是所有人的。
18:21
JD: Indeed.
415
1101663
1166
杰夫:完全正确。
18:22
CA: It's very good to hear you come and say that, Jeff.
416
1102871
2583
克里斯:非常高兴 听到你这么说,杰夫。
非常感谢你来到TED。
18:25
Thank you so much for coming here to TED.
417
1105454
2042
杰夫:谢谢
18:27
JD: Thank you.
418
1107538
1166
(掌声)
18:28
(Applause)
419
1108704
1167
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7