016 - Past, Present & Future Continuous - Beginning English Lesson - Basic English Grammar

89,069 views ・ 2011-12-23

EnglishAnyone


Haga doble clic en los subtítulos en inglés para reproducir el vídeo. Los subtítulos traducidos se traducen automáticamente.

00:02
0
2990
3770
00:06
english anyone less than 16
1
6760
400
ingléscualquier persona menor de 16
00:07
english anyone less than 16 past present and future
2
7160
1950
inglés cualquier persona menor de 16 pasado presente y futuro
00:09
past present and future
3
9110
90
00:09
past present and future continuous
4
9200
2660
pasado presenteyfuturo
pasado presenteyfuturo continuo
00:11
continuous
5
11860
400
continuo
00:12
continuous hey there i'm drew what's your
6
12260
4970
continuo hola, dibujé cuál es tu
00:17
hey there i'm drew what's your
7
17230
400
00:17
hey there i'm drew what's your name
8
17630
350
00:17
name
9
17980
400
hola,dibujécuál estu
hola,dibujécuál estu nombre
nombre
00:18
name today I'm happy yesterday i was
10
18380
5630
nombre hoy estoy feliz ayer estaba
00:24
today I'm happy yesterday i was
11
24010
400
00:24
today I'm happy yesterday i was tired
12
24410
2360
hoyestoyfelizayerestaba
hoyestoyfelizayerestaba cansado
00:26
tired
13
26770
400
cansado
00:27
tired how are you today I speak
14
27170
4370
cansado como estas hoy hablo
00:31
how are you today I speak
15
31540
400
00:31
how are you today I speak English
16
31940
2180
comoestas hoyhablo
comoestas hoyhablo ingles
00:34
English
17
34120
400
00:34
English I have a gray sweatshirt
18
34520
3920
ingles
ingles Tengo una sudadera gris.
00:38
I have a gray sweatshirt
19
38440
400
00:38
I have a gray sweatshirt listen and watch climb
20
38840
6490
Tengo una sudaderagris.
00:45
listen and watch climb
21
45330
400
00:45
listen and watch climb climbing
22
45730
5040
00:50
climbing
23
50770
400
00:51
climbing pop up being
24
51170
5820
00:56
pop up being
25
56990
400
00:57
pop up being past continuous I was not a verb
26
57390
4760
01:02
past continuous I was not a verb
27
62150
400
01:02
past continuous I was not a verb inc
28
62550
890
no un verbo
pasado continuoyono era un verbo inc
01:03
inc
29
63440
400
01:03
inc you were not a verb king he she
30
63840
4290
inc
inc tú no eras un verbo rey él ella
01:08
you were not a verb king he she
31
68130
360
01:08
you were not a verb king he she it was not a verb being we they
32
68490
4440
tú no erasunverborey élella
tú no eras un verbo rey él ella no era un verbo siendo nosotros ellos
01:12
it was not a verb being we they
33
72930
330
no era un ve rb siendonosotros ellos
01:13
it was not a verb being we they were not a verb
34
73260
4660
no era un verbo siendo nosotros ellos no eran un verbo
01:17
were not a verb
35
77920
400
no eranunverbo
01:18
were not a verb what was he doing yesterday was
36
78320
4970
eran no un verbo que estaba haciendo ayer era
01:23
what was he doing yesterday was
37
83290
400
01:23
what was he doing yesterday was he shaving
38
83690
1639
que estaba haciendo ayer era
que estaba haciendo ayer estaba afeitando
01:25
he shaving
39
85329
400
01:25
he shaving no he wasn't was he feeding
40
85729
4850
afeitando afeitando no no estaba alimentando
01:30
no he wasn't was he feeding
41
90579
400
01:30
no he wasn't was he feeding monkeys
42
90979
1131
no estaba alimentando
no estaba alimentando monos
01:32
monkeys
43
92110
400
01:32
monkeys yes he was what was he throw
44
92510
4859
monos
monos sí era lo que tiraba
01:37
yes he was what was he throw
45
97369
390
01:37
yes he was what was he throw away
46
97759
2181
sí era lo que tiraba
sí era lo que
01:39
away
47
99940
400
01:40
away was he throwing spoons
48
100340
3530
tiraba era él tiró cucharas
01:43
was he throwing spoons
49
103870
400
él tiró cucharas
01:44
was he throwing spoons no he wasn't
50
104270
3280
él tiró cucharas no no estaba no
01:47
no he wasn't
51
107550
400
01:47
no he wasn't she was throwing food
52
107950
3410
no estaba no estaba ella estaba tirando comida
01:51
she was throwing food
53
111360
400
01:51
she was throwing food were the monkeys eating the food
54
111760
4660
ella estaba tirando comida
ella estaba tirando comida eran los monos comiendo la comida
01:56
were the monkeys eating the food
55
116420
400
01:56
were the monkeys eating the food yes they were
56
116820
2930
eran losmonoscomiendola comida
estaban los monos comiendo la comida si estaban
01:59
yes they were
57
119750
400
si estaban
02:00
yes they were was he picking up the monkeys
58
120150
3109
si estaban estaba recogiendo los monos
02:03
was he picking up the monkeys
59
123259
400
02:03
was he picking up the monkeys no he wasn't he wasn't picking
60
123659
3950
estaba
recogiendo los monos estaba recogiendo los monos
02:07
no he wasn't he wasn't picking
61
127609
400
02:08
no he wasn't he wasn't picking the monkeys up
62
128009
1971
no estaba recogiendo no estaba no estaba recogiendo los monos
02:09
the monkeys up
63
129980
400
02:10
the monkeys up what was this man doing
64
130380
3660
los monos los monos ¿qué? que estaba haciendo este hombre
02:14
what was this man doing
65
134040
400
02:14
what was this man doing he was sweeping was he running
66
134440
6110
queestabahaciendo
este hombre que estaba haciendo este hombre estaba barriendo estaba
02:20
he was sweeping was he running
67
140550
400
02:20
he was sweeping was he running no he wasn't
68
140950
3260
corriendo estaba barriendoestaba
corriendo estaba barriendo estaba corriendo
02:24
no he wasn't
69
144210
400
02:24
no he wasn't we're the monkees eating
70
144610
3510
somos los monos comiendo
02:28
we're the monkees eating
71
148120
400
02:28
we're the monkees eating yes they were
72
148520
3320
somos losmonoscomiendo
somos los monos comiendo sí eran
02:31
yes they were
73
151840
400
sí eran
02:32
yes they were we're the monkees watching TV no
74
152240
3710
sí eran somos los monos viendo la televisión no
02:35
we're the monkees watching TV no
75
155950
400
somos losmonosviendo latelevisión no
02:36
we're the monkees watching TV no they weren't
76
156350
3250
somos los monos viendo la televisión no no eran
02:39
they weren't
77
159600
400
02:40
they weren't present continuous
78
160000
2630
no eran no eran presente continuo
02:42
present continuous
79
162630
400
presentecontinuo
02:43
present continuous I am NOT verb in you are not a
80
163030
5090
presente continuo NO soy verbo en tú no eres un
02:48
I am NOT verb in you are not a
81
168120
400
02:48
I am NOT verb in you are not a verb in he she it is not a verb
82
168520
4850
NO soyverbo en túno eresun
NO soy verbo en tú no eres un verbo en él ella es no es un verbo
02:53
verb in he she it is not a verb
83
173370
400
02:53
verb in he she it is not a verb in we they are not a verb
84
173770
7330
verbo enélella no esunverbo
verbo en él ella no es un verbo en nosotros no son un verbo
03:01
in we they are not a verb
85
181100
400
03:01
in we they are not a verb what is she doing today
86
181500
4100
en nosotrosno sonunverbo
en nosotros no son un verbo qué está haciendo ella hoy
03:05
what is she doing today
87
185600
400
qué está ella haciendo hoy
03:06
what is she doing today today she is cleaning is she
88
186000
4320
que esta haciendo ella hoy hoy esta limpiando esta ella
03:10
today she is cleaning is she
89
190320
270
03:10
today she is cleaning is she rolling the carpet
90
190590
2900
hoyestalimpiandoesta
ella hoy esta limpiando esta
03:13
rolling the carpet
91
193490
400
03:13
rolling the carpet yes she is is she watering a
92
193890
3960
rodando glaalfombra
enrollando la alfombra si ella esta ella regando a
03:17
yes she is is she watering a
93
197850
330
siellaesta
03:18
yes she is is she watering a plant
94
198180
1310
ella estaregando una planta
03:19
plant
95
199490
400
03:19
plant no she isn't
96
199890
2450
planta
planta no ella no esta
03:22
no she isn't
97
202340
400
03:22
no she isn't what is she doing now
98
202740
2930
no ella no esta
no ella no esta que esta haciendo ahora
03:25
what is she doing now
99
205670
400
¿Qué está haciendo ahora?
03:26
what is she doing now she is wiping the floor is she
100
206070
5610
03:31
she is wiping the floor is she
101
211680
240
03:31
she is wiping the floor is she riding a bike
102
211920
1640
03:33
riding a bike
103
213560
400
03:33
riding a bike no she isn't what she doing now
104
213960
6500
¿Qué está haciendo ahora?
03:40
no she isn't what she doing now
105
220460
400
03:40
no she isn't what she doing now is she washing her hands
106
220860
5210
ella no es lo que está haciendo ahora
no ella no es lo que está haciendo ahora se está lavando las manos se
03:46
is she washing her hands
107
226070
400
03:46
is she washing her hands nope she's wiping the window
108
226470
5240
está lavando las manos
se está lavando las manos
03:51
nope she's wiping the window
109
231710
400
03:52
nope she's wiping the window she's cleaning the window
110
232110
3620
ventana
03:55
she's cleaning the window
111
235730
400
ella está limpiando la ventana
03:56
she's cleaning the window what's she doing now she's
112
236130
4280
ella está limpiando la ventana qué está haciendo ahora ella está
04:00
what's she doing now she's
113
240410
400
04:00
what's she doing now she's sitting
114
240810
260
qué está haciendo ahoraella está sentada
04:01
sitting
115
241070
400
04:01
sitting isn't she no she isn't it
116
241470
5520
sentada
sentada ¿
04:06
isn't she no she isn't it
117
246990
400
04:07
isn't she no she isn't it she's dusting the windowsill
118
247390
8270
no? ella no ella no lo es ella está quitando el
04:15
she's dusting the windowsill
119
255660
400
04:16
she's dusting the windowsill future continuous I you he she
120
256060
4670
polvo del alféizar indowsill futuro continuo yo tú él ella
04:20
future continuous I you he she
121
260730
400
futuro continuoyotú él ella
04:21
future continuous I you he she it we they will not be for you
122
261130
7050
futuro continuo yo tú él ella eso nosotros ellos no serán para ti
04:28
it we they will not be for you
123
268180
400
04:28
it we they will not be for you I am NOT going to be verb in you
124
268580
4760
esonosotrosellosno seránpara ti
eso nosotros ellos no serán para ti yo NO voy a ser verbo en ti
04:33
I am NOT going to be verb in you
125
273340
400
04:33
I am NOT going to be verb in you are not going to be verb in he
126
273740
4369
NOvoyaser verboen ti
NO voy a ser verbo en ti no va a ser verbo en el
04:38
are not going to be verb in he
127
278109
400
04:38
are not going to be verb in he she it is not going to be verb
128
278509
5361
nova a serverbo en el
no va a ser verbo en el ella no va a ser ser verbo
04:43
she it is not going to be verb
129
283870
400
ellanova a serverbo
04:44
she it is not going to be verb ain't we they are not going to
130
284270
4470
ella no va a ser verbo
04:48
ain't we they are not going to
131
288740
269
04:49
ain't we they are not going to be verb
132
289009
1250
no vamos a ser verbo
04:50
be verb
133
290259
400
04:50
be verb e
134
290659
1691
serverbo
serverbo
04:52
e
135
292350
400
04:52
e tomorrow I'm going to be yawning
136
292750
3620
04:56
tomorrow I'm going to be yawning
137
296370
400
04:56
tomorrow I'm going to be yawning will I be going to bed
138
296770
3230
05:00
will I be going to bed
139
300000
400
05:00
will I be going to bed yes I will am I going to be
140
300400
3690
e e e ser
05:04
yes I will am I going to be
141
304090
240
05:04
yes I will am I going to be fluffing my pillow
142
304330
1610
sívoya ser
sí voy a estar esponjando mi almohada
05:05
fluffing my pillow
143
305940
400
esponjandomialmohada
05:06
fluffing my pillow yes I will will I be getting
144
306340
3890
esponjando mi almohada sí voy a ser
05:10
yes I will will I be getting
145
310230
400
05:10
yes I will will I be getting under my blanket
146
310630
1610
síme
pondré sí me meteré debajo de mi manta
05:12
under my blanket
147
312240
400
05:12
under my blanket yes I will
148
312640
2930
debajo de mi manta
debajo de mi manta sí lo haré
05:15
yes I will
149
315570
400
05:15
yes I will will I be reading no I won't be
150
315970
4850
síloharé
sí lo haré estaré leyendo no no
05:20
will I be reading no I won't be
151
320820
400
lo estaré leerénono loestaré
05:21
will I be reading no I won't be reading i'll be going to sleep
152
321220
6170
voy a leer no voy a leer voy a dormir
05:27
reading i'll be going to sleep
153
327390
400
05:27
reading i'll be going to sleep continuous tense verb rules
154
327790
3240
leyendovoy a dormir
leyendo voy a dormir reglas de
05:31
continuous tense verb rules
155
331030
400
05:31
continuous tense verb rules one verb + 18 talk talking
156
331430
6350
verbos en
tiempo continuo reglas de verbos en tiempo continuo reglas de verbos en tiempo continuo un verbo + 18 hablar hablar
05:37
one verb + 18 talk talking
157
337780
400
unverbo+18hablarhablar
05:38
one verb + 18 talk talking silent last letter E Plus being
158
338180
3350
un verbo + 18 hablar hablar silencio última letra E Plus estar en
05:41
silent last letter E Plus being
159
341530
400
05:41
silent last letter E Plus being have having three voiced last
160
341930
5959
silencio última letraE Plus estar en
silencio última letra E Plus estar tener tener tres voces última
05:47
have having three voiced last
161
347889
400
tenertresvocesúltima
05:48
have having three voiced last letter E Plus being be being for
162
348289
5661
tener tres voces última letra E Plus being be being para la
05:53
letter E Plus being be being for
163
353950
400
letraE Plus being be being para la
05:54
letter E Plus being be being for verb ending in IE + y die dying
164
354350
5960
letra E Plus being be being para verbo que termina en IE + y die moribundo
06:00
verb ending in IE + y die dying
165
360310
400
06:00
verb ending in IE + y die dying five one syllable words short
166
360710
3980
verbo quetermina enIE + ydie moribundo
verbo que termina en IE + y die moribundo cinco palabras de una sílaba cinco cortos de
06:04
five one syllable words short
167
364690
400
unasílaba palabras cortas
06:05
five one syllable words short vowel plus consonant plus double
168
365090
2269
cinco palabras de una sílaba cortas t vocal más consonante más doble
06:07
vowel plus consonant plus double
169
367359
400
06:07
vowel plus consonant plus double consonant plus inc
170
367759
1991
vocalmásconsonante más doble
vocal más consonante más doble consonante más inc
06:09
consonant plus inc
171
369750
400
consonantemás inc
06:10
consonant plus inc drop dropping not w4x wax waxing
172
370150
8690
consonante más inc gota cayendo no w4x cera encerando
06:18
drop dropping not w4x wax waxing
173
378840
400
gota cayendono w4xcera encerando
06:19
drop dropping not w4x wax waxing six for multiple syllable verbs
174
379240
2899
gota cayendo no w4x cera encerando seis para verbos de varias sílabas
06:22
six for multiple syllable verbs
175
382139
400
06:22
six for multiple syllable verbs with the final syllable stressed
176
382539
1671
seis paraverbos de
varias sílabas seis para verbos de varias sílabas con la última sílaba acentuada
06:24
with the final syllable stressed
177
384210
400
06:24
with the final syllable stressed short vowel plus consonant plus
178
384610
2809
con la última sílaba acentuada
con la última sílaba acentuada vocal corta más consonante más vocal
06:27
short vowel plus consonant plus
179
387419
400
06:27
short vowel plus consonant plus double consonant plus in begin
180
387819
2991
cortamásconsonantemás
vocal corta más consonante más doble consonante más in begin
06:30
double consonant plus in begin
181
390810
400
doble consonantemás inbegin
06:31
double consonant plus in begin beginning
182
391210
2140
doble consonantemás encomenzar comenzando
06:33
beginning
183
393350
400
06:33
beginning 74 multiple syllable verbs with
184
393750
3120
comenzando
comenzando 74 verbos de sílabas múltiples con
06:36
74 multiple syllable verbs with
185
396870
390
74verbos de
06:37
74 multiple syllable verbs with the final syllable not stressed
186
397260
3050
sílabas múltiples con 74 verbos de sílabas múltiples con la última sílaba no acentuada
06:40
the final syllable not stressed
187
400310
400
06:40
the final syllable not stressed short vowel plus consonant plus
188
400710
2180
la última sílabanoacentuada
la última sílaba no acentuada vocal corta más consonante más
06:42
short vowel plus consonant plus
189
402890
400
vocal corta másconsonantemás
06:43
short vowel plus consonant plus inning
190
403290
530
06:43
inning
191
403820
400
vocal corta másconsonantemás entrada
entrada
06:44
inning listen listening
192
404220
3690
entrada escucha escucha
06:47
listen listening
193
407910
400
escuchaescucha
06:48
listen listening listen and watch tomorrow I'll
194
408310
6320
escucha escucha escucha y mira mañana
06:54
listen and watch tomorrow I'll
195
414630
400
Escucharé ymiraré mañana
06:55
listen and watch tomorrow I'll be going to need Joe castle
196
415030
2570
Escucharé y miraré mañana Voy a necesitar a Joe
06:57
be going to need Joe castle
197
417600
400
Castle Voy a necesitar aJoe
06:58
be going to need Joe castle i'm going to be taking the
198
418000
3200
Castle Voy a necesitar a Joe Castle Soy voy a tomar el
07:01
i'm going to be taking the
199
421200
400
07:01
i'm going to be taking the elevator
200
421600
2380
voy atomarel
voy atomarel ascensor
07:03
elevator
201
423980
400
ascensor
07:04
elevator it's going to be cold and windy
202
424380
7970
ascensor va a hacer frío y
07:12
it's going to be cold and windy
203
432350
400
07:12
it's going to be cold and windy people will be wearing coats
204
432750
3080
viento va a hacer frío y
viento va a hacer frío y viento la gente llevará abrigos
07:15
people will be wearing coats
205
435830
400
la gente usará abrigos la
07:16
people will be wearing coats nijo castle has moats bridges
206
436230
5420
gente usará abrigos el castillo de nijo tiene fosos puentes el
07:21
nijo castle has moats bridges
207
441650
400
castillo de nijotiene fosospuentes el
07:22
nijo castle has moats bridges and beautiful gardens
208
442050
4140
castillo de nijo tiene fosos puentes y hermosos jardines
07:26
and beautiful gardens
209
446190
400
07:26
and beautiful gardens the scenery will be breathtaking
210
446590
6230
y hermosos jardines
y hermosos jardines el paisaje será impresionante
07:32
the scenery will be breathtaking
211
452820
400
el paisajeserá impresionante
07:33
the scenery will be breathtaking the leaves will be changing
212
453220
5100
el paisaje será impresionante el las hojas cambiarán
07:38
the leaves will be changing
213
458320
150
07:38
the leaves will be changing colors
214
458470
1880
las hojas cambiarán las hojas cambiarán colores
07:40
colors
215
460350
400
07:40
colors a waterwheel will be spinning
216
460750
9000
colores
colores una rueda hidráulica girará
07:49
a waterwheel will be spinning
217
469750
400
unarueda hidráulica girará
07:50
a waterwheel will be spinning and in a tranquil pond
218
470150
3290
una rueda hidráulica w estaré dando vueltas y en un estanque tranquilo
07:53
and in a tranquil pond
219
473440
400
07:53
and in a tranquil pond I will be seen a beautiful
220
473840
2090
y en un estanque tranquilo
y en un estanque tranquilo seré visto hermoso
07:55
I will be seen a beautiful
221
475930
400
seré vistohermoso
07:56
I will be seen a beautiful waterfall
222
476330
6920
seré vistounahermosa cascada
08:03
waterfall
223
483250
400
08:03
waterfall ducks will be floating on the
224
483650
2390
cascada
cascada los patos flotarán sobre los
08:06
ducks will be floating on the
225
486040
400
08:06
ducks will be floating on the water and fish will be swimming
226
486440
3900
patosflotarán sobre los
patos estarán flotando en el agua y los peces estarán nadando en el
08:10
water and fish will be swimming
227
490340
240
08:10
water and fish will be swimming in it
228
490580
2570
agua y los peces estarán nadando en el
agua y los peces estarán nadando en ella
08:13
in it
229
493150
400
08:13
in it people are going to be taking
230
493550
3950
en ella la gente va a tomar la
08:17
people are going to be taking
231
497500
400
08:17
people are going to be taking pictures
232
497900
860
gente va a tomar la
gente va a tomar fotos
08:18
pictures
233
498760
400
imágenes
08:19
pictures I'll see ornate carvings a boy
234
499160
8039
imágenes veré tallas ornamentadas un niño
08:27
I'll see ornate carvings a boy
235
507199
361
08:27
I'll see ornate carvings a boy will be pushing his stroller
236
507560
6519
veré tallasornamentadasunniño
veré tallas ornamentadas un niño empujará su cochecito empujará su cochecito
08:34
will be pushing his stroller
237
514079
400
08:34
will be pushing his stroller people are going to be buying
238
514479
1881
empujará su cochecito la gente va a comprar la
08:36
people are going to be buying
239
516360
400
08:36
people are going to be buying gifts
240
516760
6650
gente va va a comprar la
gente va a comprar regalos
08:43
gifts
241
523410
400
08:43
gifts yeah
242
523810
1290
08:45
yeah
243
525100
400
08:45
yeah yeah
244
525500
1350
08:46
yeah
245
526850
400
08:47
yeah are people going to be taking
246
527250
1910
08:49
are people going to be taking
247
529160
400
08:49
are people going to be taking pictures
248
529560
1910
08:51
pictures
249
531470
400
08:51
pictures yes they will am I going to be
250
531870
5340
regalos regalos ser
08:57
yes they will am I going to be
251
537210
210
08:57
yes they will am I going to be seeing monkeys
252
537420
2509
sí ellos serányovoya ser
sí ellos serán yo voy a estar viendo monos
08:59
seeing monkeys
253
539929
400
viendomonos
09:00
seeing monkeys no I'm going to be seeing fish
254
540329
4831
viendo monos no voy a estar viendo peces
09:05
no I'm going to be seeing fish
255
545160
400
09:05
no I'm going to be seeing fish yesterday I went to nijo castle
256
545560
5830
novoy a estar viendo peces
no voy a estar viendo peces ayer fui al castillo de nijo
09:11
yesterday I went to nijo castle
257
551390
400
09:11
yesterday I went to nijo castle I was taking the elevator
258
551790
10130
ayer fui alcastillo de nijo
ayer fui al castillo de nijo estaba tomando el
09:21
259
561920
3259
09:25
it was cold and windy
260
565179
400
09:25
it was cold and windy people were wearing coats nijo
261
565579
6321
ascensor hacía frío y
viento hacía frío y viento la gente llevaba abrigos nijo la
09:31
people were wearing coats nijo
262
571900
400
gente llevaba abrigosnijo la
09:32
people were wearing coats nijo castle has moats bridges and
263
572300
3439
gente llevaba abrigos el castillo de nijo tiene fosos puentes y
09:35
castle has moats bridges and
264
575739
400
castillotiene fosospuentesy
09:36
castle has moats bridges and beautiful gardens the scenery
265
576139
4850
castillo tiene fosos puentes y hermosos jardines el paisaje
09:40
beautiful gardens the scenery
266
580989
400
hermosos jardineselpaisaje
09:41
beautiful gardens the scenery was breathtaking
267
581389
4361
hermosos jardines el paisaje era impresionante
09:45
was breathtaking
268
585750
400
era impresionante
09:46
was breathtaking yeah
269
586150
1700
era impresionante sí
09:47
yeah
270
587850
400
09:48
yeah yeah
271
588250
1220
sí sí
09:49
yeah
272
589470
400
09:49
yeah the leaves are changing colors
273
589870
6160
sí las hojas están cambiando de color
09:56
the leaves are changing colors
274
596030
400
09:56
the leaves are changing colors a waterwheel was spinny
275
596430
3870
las hojasestáncambiando decolor
las hojas son cambiando de color una rueda de agua giraba
10:00
a waterwheel was spinny
276
600300
400
10:00
a waterwheel was spinny yeah
277
600700
2860
una rueda de agua giraba
una rueda de agua giraba sí
10:03
yeah
278
603560
400
10:03
yeah and in a tranquil pond I saw a
279
603960
3020
sí y en un estanque tranquilo vi un
10:06
and in a tranquil pond I saw a
280
606980
400
y en un estanque tranquilovi un
10:07
and in a tranquil pond I saw a beautiful waterfall
281
607380
5300
y en un estanque tranquilo vi una hermosa cascada
10:12
beautiful waterfall
282
612680
400
hermosa cascada
10:13
beautiful waterfall ducks were floating on the water
283
613080
2090
hermosa cascada los patos flotaban en el agua los
10:15
ducks were floating on the water
284
615170
400
10:15
ducks were floating on the water and fish were swimming in it
285
615570
6609
patos flotaban en el agua los
patos flotaban en el agua y los peces nadaban en ella
10:22
and fish were swimming in it
286
622179
400
10:22
and fish were swimming in it people were taking pictures i
287
622579
7640
y los pecesnadaban en ella
y los peces nadaban en ella la gente estaba tomando fotos i la
10:30
people were taking pictures i
288
630219
400
10:30
people were taking pictures i saw intricate carvings a boy was
289
630619
5961
gente estaba tomando fotosi la
gente estaba tomando fotos vi tallas intrincadas un niño
10:36
saw intricate carvings a boy was
290
636580
400
10:36
saw intricate carvings a boy was pushing his stroller people were
291
636980
6509
vio tallasintrincadasunniño
vio tallas intrincadas un niño empujaba su cochecito la gente
10:43
pushing his stroller people were
292
643489
330
10:43
pushing his stroller people were buying gifts
293
643819
5041
empujaba su cochecito lagente
empujaba su cochecito la gente compraba regalos
10:48
buying gifts
294
648860
400
comprando regalos
10:49
buying gifts yeah
295
649260
6429
comprando regalos sí
10:55
yeah
296
655689
400
10:56
yeah where people taking pictures
297
656089
2951
sí donde la gente tomaba fotos
10:59
where people taking pictures
298
659040
400
10:59
where people taking pictures yeah
299
659440
2160
donde lagentetomaba fotos
donde lagentetomaba fotos sí
11:01
yeah
300
661600
400
11:02
yeah yes they were
301
662000
2790
sí sí estaban
11:04
yes they were
302
664790
400
sí estaban
11:05
yes they were was I taking a ropeway no i
303
665190
4250
sí estaban yo tomando un teleférico no yo
11:09
was I taking a ropeway no i
304
669440
400
11:09
was I taking a ropeway no i wasn't i was taking an elevator
305
669840
4790
estabayotomando unteleféricono yo
estaba yo tomando un teleférico no yo no estaba tomando un ascensor
11:14
wasn't i was taking an elevator
306
674630
400
noestaba tomando un ascensor
11:15
wasn't i was taking an elevator goodbye
307
675030
4800
noestaba tomando un ascensor adiós
11:19
goodbye
308
679830
400
adiós
11:20
goodbye to learn more about our monthly
309
680230
1850
adiós aprender m ore
11:22
to learn more about our monthly
310
682080
400
11:22
to learn more about our monthly master English conversation
311
682480
1790
sobre nuestro mensual para obtener más información
sobre nuestro mensual para obtener más información sobre nuestro maestro de conversación en inglés maestro de conversación en inglés
11:24
master English conversation
312
684270
400
11:24
master English conversation audio and video lessons and to
313
684670
2220
maestro deconversación en
inglés lecciones de audio y video y lecciones de
11:26
audio and video lessons and to
314
686890
120
11:27
audio and video lessons and to get fluent in English faster
315
687010
1280
audio y video y lecciones de audio y video y hablar inglés
11:28
get fluent in English faster
316
688290
400
11:28
get fluent in English faster with our free newsletter and
317
688690
1760
con fluidez más rápido obtener fluidez en inglés más rápido
adquiera fluidez en inglés más rápido con nuestro boletín gratuito y
11:30
with our free newsletter and
318
690450
400
11:30
with our free newsletter and email video course for students
319
690850
1700
connuestro boletín gratuito y
con nuestro boletín gratuito y curso de video por
11:32
email video course for students
320
692550
400
11:32
email video course for students visit us at English anyone . com
321
692950
6000
correo electrónico para estudiantes curso de video por correo electrónico para estudiantes curso de video por
correo electrónico para estudiantes visítenos en Inglés cualquiera. com
Acerca de este sitio web

Este sitio le presentará vídeos de YouTube útiles para aprender inglés. Verá lecciones de inglés impartidas por profesores de primera categoría de todo el mundo. Haz doble clic en los subtítulos en inglés que aparecen en cada página de vídeo para reproducir el vídeo desde allí. Los subtítulos se desplazan en sincronía con la reproducción del vídeo. Si tiene algún comentario o petición, póngase en contacto con nosotros mediante este formulario de contacto.

https://forms.gle/WvT1wiN1qDtmnspy7